Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constants of Motion for Conserved and Non-conserved Dynamics (2403.19418v2)

Published 28 Mar 2024 in cs.LG and nlin.CD

Abstract: This paper begins with a dynamical model that was obtained by applying a machine learning technique (FJet) to time-series data; this dynamical model is then analyzed with Lie symmetry techniques to obtain constants of motion. This analysis is performed on both the conserved and non-conserved cases of the 1D and 2D harmonic oscillators. For the 1D oscillator, constants are found in the cases where the system is underdamped, overdamped, and critically damped. The novel existence of such a constant for a non-conserved model is interpreted as a manifestation of the conservation of energy of the {\em total} system (i.e., oscillator plus dissipative environment). For the 2D oscillator, constants are found for the isotropic and anisotropic cases, including when the frequencies are incommensurate; it is also generalized to arbitrary dimensions. In addition, a constant is identified which generalizes angular momentum for all ratios of the frequencies. The approach presented here can produce {\em multiple} constants of motion from a {\em single}, generic data set.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. M. F. Zimmer, arXiv preprint arXiv:2110.06917 (2024).
  2. S. Krippendorf and M. Syvaeri, Mach. Learn.: Sci. Technol. 2 (2021).
  3. S. Ha and H. Jeong, Phys. Rev. Research 3 (2021).
  4. Y. I. Mototake, Phys. Rev. E 103, 033303 (2021).
  5. Z. Liu and M. Tegmark, Phys. Rev. Lett. 126, 180604 (2021).
  6. S. Saremi and A. Hyvärinen, J. Mach. Learn. Res. (JMLR) 20, 1 (2019).
  7. V. A. Dulock and H. V. McIntosh, Am. J. Phys. 33, 109 (1965).
  8. A. Sinha and A. Ghosh, arXiv preprint arxiv:2306.08837 (2023).
  9. J. M. Cervero and J. Villarroel, J. Phys. A: Math. Gen. 17 (1984).
  10. C. Muriel and J. L. Romero, J. Phys. A: Math. Theor. 42 (2009).
  11. P. J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed. (Springer-Verlag, 1993).
  12. H. Stephani, Differential Equations, Their solution using symmetries (Cambridge, 1989).
  13. T. S. Cohen and M. Welling, in Proc. 33th International Conference on Machine Learning (ICML) (New York, NY, 2016).
  14. E. L. Ince, Ordinary Differential Equations (Dover, 1956).
  15. S. Lie, Archiv for Mathematik og Naturvidenskab 6, 328 (1881), (in German).
  16. P. E. Hydon, Symmetry Methods for Differential Equations: A Beginner’s Guide (Cambridge, 2000).
  17. G. W. Bluman and S. Kumei, Symmetries and Differential Equations (Springer-Verlag, 1989).
  18. M. F. Zimmer,  (2023), (Unpublished notes).
  19. H. Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, 1980).
  20. E. A. Jackson, Perspectives of nonlinear dynamics, Vol. 2 (Cambridge University Press, 1991).
  21. M. F. Zimmer,  (2021a), (Unpublished notes).
  22. M. F. Zimmer, arXiv preprint arXiv:2110.06917v2 (2021b), (See Appendix C).
  23. Wikipedia contributors, “atan2,”  (2024), [Online accessed March 27, 2024].

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com