Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discovering conservation laws from data for control (1811.00961v1)

Published 2 Nov 2018 in math.DS, cs.LG, cs.SY, and math.OC

Abstract: Conserved quantities, i.e. constants of motion, are critical for characterizing many dynamical systems in science and engineering. These quantities are related to underlying symmetries and they provide fundamental knowledge about physical laws, describe the evolution of the system, and enable system reduction. In this work, we formulate a data-driven architecture for discovering conserved quantities based on Koopman theory. The Koopman operator has emerged as a principled linear embedding of nonlinear dynamics, and its eigenfunctions establish intrinsic coordinates along which the dynamics behave linearly. Interestingly, eigenfunctions of the Koopman operator associated with vanishing eigenvalues correspond to conserved quantities of the underlying system. In this paper, we show that these invariants may be identified with data-driven regression and power series expansions, based on the infinitesimal generator of the Koopman operator. We further establish a connection between the Koopman framework, conserved quantities, and the Lie-Poisson bracket. This data-driven method for discovering conserved quantities is demonstrated on the three-dimensional rigid body equations, where we simultaneously discover the total energy and angular momentum and use these intrinsic coordinates to develop a model predictive controller to track a given reference value.

Citations (47)

Summary

We haven't generated a summary for this paper yet.