Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep CSI Compression for Dual-Polarized Massive MIMO Channels with Disentangled Representation Learning (2403.19185v1)

Published 28 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: Channel state information (CSI) feedback is critical for achieving the promised advantages of enhancing spectral and energy efficiencies in massive multiple-input multiple-output (MIMO) wireless communication systems. Deep learning (DL)-based methods have been proven effective in reducing the required signaling overhead for CSI feedback. In practical dual-polarized MIMO scenarios, channels in the vertical and horizontal polarization directions tend to exhibit high polarization correlation. To fully exploit the inherent propagation similarity within dual-polarized channels, we propose a disentangled representation neural network (NN) for CSI feedback, referred to as DiReNet. The proposed DiReNet disentangles dual-polarized CSI into three components: polarization-shared information, vertical polarization-specific information, and horizontal polarization-specific information. This disentanglement of dual-polarized CSI enables the minimization of information redundancy caused by the polarization correlation and improves the performance of CSI compression and recovery. Additionally, flexible quantization and network extension schemes are designed. Consequently, our method provides a pragmatic solution for CSI feedback to harness the physical MIMO polarization as a priori information. Our experimental results show that the performance of our proposed DiReNet surpasses that of existing DL-based networks, while also effectively reducing the number of network parameters by nearly one third.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-Dhahir, and R. Schober, “Massive access for 5G and beyond,” IEEE J. Sel. Areas Commun., vol. 39, no. 3, pp. 615–637, Mar. 2021.
  2. A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, “Hybrid beamforming for massive MIMO: A survey,” IEEE Commun. Mag., vol. 55, no. 9, pp. 134–141, Sep. 2017.
  3. J. Xu, C. Yuen, C. Huang, N. Ul Hassan, G. C. Alexandropoulos, M. Di Renzo, and M. Debbah, “Reconfiguring wireless environments via intelligent surfaces for 6G: Reflection, modulation, and security,” Sci. China Inf. Sci., vol. 66, no. 3, p. 130304, Feb. 2023.
  4. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.
  5. Y.-G. Lim and C.-B. Chae, “Compressed channel feedback for correlated massive MIMO systems,” in Proc. IEEE Int. Conf. Commun., Sydney, NSW, Australia, Jun. 2014, pp. 360–364.
  6. D. J. Love, R. W. Heath, V. K. Lau, D. Gesbert, B. D. Rao, and M. Andrews, “An overview of limited feedback in wireless communication systems,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 1341–1365, Oct. 2008.
  7. 3GPP, “3GPP TR 38.214 V16.1.0 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Study on Physical Layer Procedures for Data (Release 16),” Tech. Rep., 2020.
  8. C.-C. Tsai, T.-Y. Yeh, W.-H. Chou, W.-C. Pao, and J.-Y. Pan, “A low complexity PMI selection scheme for 3GPP 5G NR FDD systems,” in Proc. Asia–Pacific Signal Inf. Process. Assoc. Annu. Summit Conf., Tokyo, Japan, Dec. 2021, pp. 1917–1922.
  9. W. Shen, L. Dai, Y. Zhang, J. Li, and Z. Wang, “On the performance of channel-statistics-based codebook for massive MIMO channel feedback,” IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7553–7557, Aug. 2017.
  10. F. W. Vook, E. Visotsky, T. A. Thomas, and B. Mondal, “Product codebook feedback for massive MIMO with cross-polarized 2D antenna arrays,” in Proc. 25th IEEE Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun., Washington, DC, USA, Sep. 2014, pp. 502–506.
  11. Z. Gao, L. Dai, S. Han, I. Chih-Lin, Z. Wang, and L. Hanzo, “Compressive sensing techniques for next-generation wireless communications,” IEEE Wireless Commun., vol. 25, no. 3, pp. 144–153, Jun. 2018.
  12. P.-H. Kuo, H. T. Kung, and P.-A. Ting, “Compressive sensing based channel feedback protocols for spatially-correlated massive antenna arrays,” in Proc. IEEE Wireless Commun. Netw. Conf., Paris, France, Apr. 2012, pp. 492–497.
  13. Z. Qin, J. Fan, Y. Liu, Y. Gao, and G. Y. Li, “Sparse representation for wireless communications: A compressive sensing approach,” IEEE Signal Process. Mag., vol. 35, no. 3, pp. 40–58, May 2018.
  14. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015.
  15. R. Sarikaya, G. E. Hinton, and A. Deoras, “Application of deep belief networks for natural language understanding,” IEEE/ACM Trans. Audio, Speech, Language Process., vol. 22, no. 4, pp. 778–784, Apr. 2014.
  16. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al., “Training language models to follow instructions with human feedback,” in Proc. Adv. Neural Inf. Process. Syst., New Orleans, LA, USA, Mar. 2022, pp. 27730–27744.
  17. W. Xu, Y. Huang, W. Wang, F. Zhu, and X. Ji, “Toward ubiquitous and intelligent 6G networks: From architecture to technology,” Sci. China Inf. Sci., vol. 66, no. 3, pp. 130300:1–2, Mar. 2023.
  18. G. Gui, M. Liu, F. Tang, N. Kato, and F. Adachi, “6G: Opening new horizons for integration of comfort, security, and intelligence,” IEEE Wireless Commun., vol. 27, no. 5, pp. 126–132, Oct. 2020.
  19. C.-K. Wen, W.-T. Shih, and S. Jin, “Deep learning for massive MIMO CSI feedback,” IEEE Wireless Commun. Lett., vol. 7, no. 5, pp. 748–751, Oct. 2018.
  20. T. Wang, C.-K. Wen, S. Jin, and G. Y. Li, “Deep learning-based CSI feedback approach for time-varying massive MIMO channels,” IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 416–419, Apr. 2019.
  21. C. Lu, W. Xu, H. Shen, J. Zhu, and K. Wang, “MIMO channel information feedback using deep recurrent network,” IEEE Commun. Lett., vol. 23, no. 1, pp. 188–191, Jan. 2019.
  22. Z. Lu, J. Wang, and J. Song, “Multi-resolution CSI feedback with deep learning in massive MIMO system,” in Proc. IEEE Int. Conf. Commun. Workshops, Dublin, Ireland, Jun. 2020, pp. 1–6.
  23. Z. Lu, X. Zhang, H. He, J. Wang, and J. Song, “Binarized aggregated network with quantization: Flexible deep learning deployment for CSI feedback in massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 21, no. 7, pp. 5514–5525, Jul. 2022.
  24. S. Zhang, W. Xu, S. Jin, X. You, D. W. K. Ng, and L.-C. Wang, “Dual-propagation-feature fusion enhanced neural CSI compression for massive MIMO,” IEEE Trans. Commun., early access, May 2023.
  25. Z. Yin, W. Xu, R. Xie, S. Zhang, D. W. K. Ng, and X. You, “Deep CSI compression for massive MIMO: A self-information model-driven neural network,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8872–8886, Oct. 2022.
  26. C. Lu, W. Xu, S. Jin, and K. Wang, “Bit-level optimized neural network for multi-antenna channel quantization,” IEEE Wireless Commun. Lett., vol. 9, no. 1, pp. 87–90, Jan. 2020.
  27. G. Fan, J. Sun, G. Gui, H. Gacanin, B. Adebisi, and T. Ohtsuki, “Fully convolutional neural network-based CSI limited feedback for FDD massive MIMO systems,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 2, pp. 672–682, Jun. 2022.
  28. H. Ye, F. Gao, J. Qian, H. Wang, and G. Y. Li, “Deep learning-based denoise network for CSI feedback in FDD massive MIMO systems,” IEEE Commun. Lett., vol. 24, no. 8, pp. 1742–1746, Aug. 2020.
  29. Y. Sun, W. Xu, L. Liang, N. Wang, G. Y. Li, and X. You, “A lightweight deep network for efficient CSI feedback in massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 10, no. 8, pp. 1840–1844, Aug. 2021.
  30. S. Ji and M. Li, “CLNet: Complex input lightweight neural network designed for massive MIMO CSI feedback,” IEEE Wireless Commun. Lett., vol. 10, no. 10, pp. 2318–2322, Oct. 2021.
  31. Y. Guo, R. Zhao, S. Lai, L. Fan, X. Lei, and G. K. Karagiannidis, “Distributed machine learning for multiuser mobile edge computing systems,” IEEE J. Sel. Top. Signal Process, vol. 16, no. 3, pp. 460–473, Apr. 2022.
  32. W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah, “Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing,” IEEE J. Sel. Top. Sign. Proces., vol. 17, no. 1, pp. 9–39, Jan. 2023.
  33. J. Guo, C.-K. Wen, S. Jin, and G. Y. Li, “Overview of deep learning-based CSI feedback in massive MIMO systems,” IEEE Trans. Commun., vol. 70, no. 12, pp. 8017–8045, Dec. 2022.
  34. J. Xu, W. Xu, D. W. K. Ng, and A. L. Swindlehurst, “Secure communication for spatially sparse millimeter-wave massive MIMO channels via hybrid precoding,” IEEE Trans. Commun., vol. 68, no. 2, pp. 887–901, Feb. 2020.
  35. C. Oestges, B. Clerckx, M. Guillaud, and M. Debbah, “Dual-polarized wireless communications: From propagation models to system performance evaluation,” IEEE Trans. Wireless Commun., vol. 7, no. 10, pp. 4019–4031, Oct. 2008.
  36. Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE Trans. Pattern Anal. Machine Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013.
  37. R. Xie, W. Xu, J. Yu, A. Hu, D. W. K. Ng, and A. L. Swindlehurst, “Disentangled representation learning for RF fingerprint extraction under unknown channel statistics,” IEEE Trans. Commun., vol. 71, no. 7, pp. 3946–3962, Jul. 2023.
  38. M.-H. Guo, C.-Z. Lu, Q. Hou, Z. Liu, M.-M. Cheng, and S.-M. Hu, “Segnext: Rethinking convolutional attention design for semantic segmentation,” in Proc. Adv. Neural Inf. Process. Syst., New Orleans, LA, USA, Mar. 2022, pp. 1140–1156.
  39. 3GPP, “3GPP TR 38.901 V16.1.0 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Channel Model for Frequencies from 0.5 to 100 GHz (Release 16),” Tech. Rep., 2020.
  40. W. Liu, W. Tian, H. Xiao, S. Jin, X. Liu, and J. Shen, “Evcsinet: Eigenvector-based CSI feedback under 3GPP link-level channels,” IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2688–2692, Dec. 2021.
  41. J. J. Ryu, Y. Choi, Y.-H. Kim, M. El-Khamy, and J. Lee, “Wyner VAE: A variational autoencoder with succinct common representation learning,” in Proc. Int. Conf. Learn. Represent., Addis Ababa, Ethiopia, Apr. 2020, pp. 1–27.
  42. Y. Bengio and Y. LeCun, “Scaling learning algorithms toward AI,” Comput. Sci., vol. 34, no. 5, pp. 1–41, May 2007.
  43. Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang, “The expressive power of neural networks: A view from the width,” in Proc. Adv. Neural Inf. Process. Syst., Long Beach, CA, USA, Dec. 2017, p. 6232–6240.
  44. P. Cheng, W. Hao, S. Dai, J. Liu, Z. Gan, and L. Carin, “CLUB: A contrastive log-ratio upper bound of mutual information,” in Proc. 37th Int. Conf. Mach. Learn., Vienna, Austria, Jul. 2020, pp. 1779–1788.
  45. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. Learn. Represent., San Diego, CA, USA, May 2015, pp. 1–13.
  46. S. Jaeckel, L. Raschkowski, K. Börner, and L. Thiele, “Quadriga: A 3-D multi-cell channel model with time evolution for enabling virtual field trials,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3242–3256, Jun. 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com