Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CNN-based Analog CSI Feedback in FDD MIMO-OFDM Systems (1910.10428v1)

Published 23 Oct 2019 in cs.IT, cs.LG, eess.SP, math.IT, and stat.ML

Abstract: Massive multiple-input multiple-output (MIMO) systems require downlink channel state information (CSI) at the base station (BS) to better utilize the available spatial diversity and multiplexing gains. However, in a frequency division duplex (FDD) massive MIMO system, CSI feedback overhead degrades the overall spectral efficiency. Convolutional neural network (CNN)-based CSI feedback compression schemes has received a lot of attention recently due to significant improvements in compression efficiency; however, they still require reliable feedback links to convey the compressed CSI information to the BS. Instead, we propose here a CNN-based analog feedback scheme, called AnalogDeepCMC, which directly maps the downlink CSI to uplink channel input. Corresponding noisy channel outputs are used by another CNN to reconstruct the DL channel estimate. Not only the proposed outperforms existing digital CSI feedback schemes in terms of the achievable downlink rate, but also simplifies the operation as it does not require explicit quantization, coding and modulation, and provides a low-latency alternative particularly in rapidly changing MIMO channels, where the CSI needs to be estimated and fed back periodically.

Citations (22)

Summary

We haven't generated a summary for this paper yet.