Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Practical Benchmarks of Ising Machines: A Case Study on the Quadratic Knapsack Problem (2403.19175v2)

Published 28 Mar 2024 in cond-mat.stat-mech and cs.ET

Abstract: Combinatorial optimization has wide applications from industry to natural science. Ising machines bring an emerging computing paradigm for efficiently solving a combinatorial optimization problem by searching a ground state of a given Ising model. Current cutting-edge Ising machines achieve fast sampling of near-optimal solutions of the max-cut problem. However, for problems with additional constraint conditions, their advantages have been hardly shown due to difficulties in handling the constraints. In this work, we focus on benchmarks of Ising machines on the quadratic knapsack problem (QKP). To bring out their practical performance, we propose fast two-stage post-processing for Ising machines, which makes handling the constraint easier. Simulation based on simulated annealing shows that the proposed method substantially improves the solving performance of Ising machines and the improvement is robust to a choice of encoding of the constraint condition. Through evaluation using an Ising machine called Amplify Annealing Engine, the proposed method is shown to dramatically improve its solving performance on the QKP. These results are a crucial step toward showing advantages of Ising machines on practical problems involving various constraint conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. V. Cacchiani, M. Iori, A. Locatelli, and S. Martello, “Knapsack problems – An overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems,” Computers & Operations Research, p. 105693, 2022.
  2. N. Mohseni, P. L. McMahon, and T. Byrnes, “Ising machines as hardware solvers of combinatorial optimization problems,” Nature Reviews Physics, vol. 4, no. 6, pp. 363–379, 2022.
  3. A. Lucas, “Ising formulations of many NP problems,” Frontiers in physics, p. 5, 2014.
  4. M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk et al., “Quantum annealing with manufactured spins,” Nature, vol. 473, no. 7346, pp. 194–198, 2011.
  5. A. A. Houck, H. E. Türeci, and J. Koch, “On-chip quantum simulation with superconducting circuits,” Nature Physics, vol. 8, no. 4, pp. 292–299, 2012.
  6. Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent Ising machine based on degenerate optical parametric oscillators,” Physical Review A, vol. 88, no. 6, p. 063853, 2013.
  7. T. Honjo, T. Sonobe, K. Inaba, T. Inagaki, T. Ikuta, Y. Yamada, T. Kazama, K. Enbutsu, T. Umeki, R. Kasahara et al., “100,000-spin coherent Ising machine,” Science advances, vol. 7, no. 40, p. eabh0952, 2021.
  8. M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and H. Mizuno, “A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing,” IEEE Journal of Solid-State Circuits, vol. 51, no. 1, pp. 303–309, 2015.
  9. M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G. Katzgraber, “Physics-inspired optimization for quadratic unconstrained problems using a digital annealer,” Frontiers in Physics, vol. 7, p. 48, 2019.
  10. K. Yamamoto, K. Kawamura, K. Ando, N. Mertig, T. Takemoto, M. Yamaoka, H. Teramoto, A. Sakai, S. Takamaeda-Yamazaki, and M. Motomura, “STATICA: A 512-spin 0.25 M-weight annealing processor with an all-spin-updates-at-once architecture for combinatorial optimization with complete spin–spin interactions,” IEEE Journal of Solid-State Circuits, vol. 56, no. 1, pp. 165–178, 2020.
  11. T. Wang, L. Wu, P. Nobel, and J. Roychowdhury, “Solving combinatorial optimisation problems using oscillator based Ising machines,” Natural Computing, vol. 20, no. 2, pp. 287–306, 2021.
  12. H. Goto, K. Tatsumura, and A. R. Dixon, “Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems,” Science advances, vol. 5, no. 4, p. eaav2372, 2019.
  13. P. Codognet, D. Diaz, and S. Abreu, “Quantum and digital annealing for the quadratic assignment problem,” in 2022 IEEE International Conference on Quantum Software (QSW).   IEEE, 2022, pp. 1–8.
  14. T. Huang, J. Xu, T. Luo, X. Gu, R. S. M. Goh, and W.-F. Wong, “Benchmarking quantum (-inspired) annealing hardware on practical use cases,” IEEE Transactions on Computers, 2022.
  15. M. Parizy and N. Togawa, “Analysis and acceleration of the quadratic knapsack problem on an ising machine,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 104, no. 11, pp. 1526–1535, 2021.
  16. A. Ceselli and M. Premoli, “On good encodings for quantum annealer and digital optimization solvers,” Scientific Reports, vol. 13, no. 1, p. 5628, 2023.
  17. G. Gallo, P. L. Hammer, and B. Simeone, “Quadratic knapsack problems,” Combinatorial optimization, pp. 132–149, 1980.
  18. K. Tamura, T. Shirai, H. Katsura, S. Tanaka, and N. Togawa, “Performance comparison of typical binary-integer encodings in an Ising machine,” IEEE Access, vol. 9, pp. 81 032–81 039, 2021.
  19. S. Jimbo, D. Okonogi, K. Ando, T. Van CHU, J. Yu, M. Motomura, and K. Kawamura, “A hybrid integer encoding method for obtaining high-quality solutions of quadratic knapsack problems on solid-state annealers,” IEICE TRANSACTIONS on Information and Systems, vol. 105, no. 12, pp. 2019–2031, 2022.
  20. T. Bontekoe, F. Phillipson, and W. v. d. Schoot, “Translating constraints into QUBOs for the quadratic knapsack problem,” in International Conference on Computational Science.   Springer, 2023, pp. 90–107.
  21. K. Yonaga, M. J. Miyama, and M. Ohzeki, “Solving inequality-constrained binary optimization problems on quantum annealer,” arXiv preprint arXiv:2012.06119, 2020.
  22. Fixstars Corporation, “Fixstars Amplify AE,” 2020. [Online]. Available: https://amplify.fixstars.com/en/engine
  23. F. D. Fomeni and A. N. Letchford, “A dynamic programming heuristic for the quadratic knapsack problem,” INFORMS Journal on Computing, vol. 26, no. 1, pp. 173–182, 2014.
  24. Z. Yang, G. Wang, and F. Chu, “An effective GRASP and tabu search for the 0–1 quadratic knapsack problem,” Computers & Operations Research, vol. 40, no. 5, pp. 1176–1185, 2013.
  25. C. Patvardhan, S. Bansal, and A. Srivastav, “Parallel improved quantum inspired evolutionary algorithm to solve large size quadratic knapsack problems,” Swarm and Evolutionary Computation, vol. 26, pp. 175–190, 2016.
  26. Y. Chen and J.-K. Hao, “An iterated “hyperplane exploration” approach for the quadratic knapsack problem,” Computers & Operations Research, vol. 77, pp. 226–239, 2017.
  27. T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse Ising model,” Physical Review E, vol. 58, no. 5, p. 5355, 1998.
  28. D. Pisinger, “The quadratic knapsack problem—a survey,” Discrete applied mathematics, vol. 155, no. 5, pp. 623–648, 2007.
  29. A. Billionnet and F. Calmels, “Linear programming for the 0–1 quadratic knapsack problem,” European Journal of Operational Research, vol. 92, no. 2, pp. 310–325, 1996.
  30. F. Glover, G. Kochenberger, B. Alidaee, and M. Amini, “Solving quadratic knapsack problems by reformulation and tabu search: Single constraint case,” in Combinatorial and global optimization.   World Scientific, 2002, pp. 111–121.
  31. P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidimensional knapsack problem,” Journal of heuristics, vol. 4, no. 1, pp. 63–86, 1998.
  32. R. Jovanovic and S. Voß, “Solving the quadratic knapsack problem using grasp,” in Metaheuristics for Machine Learning: New Advances and Tools.   Springer, 2022, pp. 157–178.
  33. P. Chaillou, P. Hansen, and Y. Mahieu, “Best network flow bounds for the quadratic knapsack problem,” in Combinatorial Optimization: Lectures given at the 3rd Session of the Centro Internazionale Matematico Estivo (CIME) held at Como, Italy, August 25–September 2, 1986.   Springer, 1989, pp. 225–235.
  34. D. A. Battaglia, G. E. Santoro, and E. Tosatti, “Optimization by quantum annealing: Lessons from hard satisfiability problems,” Physical Review E, vol. 71, no. 6, p. 066707, 2005.
  35. B. Heim, T. F. Rønnow, S. V. Isakov, and M. Troyer, “Quantum versus classical annealing of Ising spin glasses,” Science, vol. 348, no. 6231, pp. 215–217, 2015.
  36. A. Billionnet and É. Soutif, “An exact method based on Lagrangian decomposition for the 0–1 quadratic knapsack problem,” European Journal of operational research, vol. 157, no. 3, pp. 565–575, 2004.
  37. K. Fukada, M. Parizy, Y. Tomita, and N. Togawa, “A three-stage annealing method solving slot-placement problems using an Ising machine,” IEEE Access, vol. 9, pp. 134 413–134 426, 2021.
  38. R. R. Hill and C. H. Reilly, “The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance,” Management Science, vol. 46, no. 2, pp. 302–317, 2000.
  39. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com

Summary

We haven't generated a summary for this paper yet.