Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linearizing Binary Optimization Problems Using Variable Posets for Ising Machines (2307.05125v2)

Published 11 Jul 2023 in math.OC, cond-mat.stat-mech, cs.ET, and physics.app-ph

Abstract: Ising machines are next-generation computers expected to efficiently sample near-optimal solutions of combinatorial optimization problems. Combinatorial optimization problems are modeled as quadratic unconstrained binary optimization (QUBO) problems to apply an Ising machine. However, current state-of-the-art Ising machines still often fail to output near-optimal solutions due to the complicated energy landscape of QUBO problems. Furthermore, the physical implementation of Ising machines severely restricts the size of QUBO problems to be input as a result of limited hardware graph structures. In this study, we take a new approach to these challenges by injecting auxiliary penalties preserving the optimum, which reduces quadratic terms in QUBO objective functions. The process simultaneously simplifies the energy landscape of QUBO problems, allowing the search for near-optimal solutions, and makes QUBO problems sparser, facilitating encoding into Ising machines with restriction on the hardware graph structure. We propose linearization of QUBO problems using variable posets as an outcome of the approach. By applying the proposed method to synthetic QUBO instances and to multi-dimensional knapsack problems, we empirically validate the effects on enhancing minor-embedding of QUBO problems and the performance of Ising machines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. V. Cacchiani, M. Iori, A. Locatelli, and S. Martello, “Knapsack problems – An overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems,” Computers & Operations Research, p. 105693, 2022.
  2. N. Mohseni, P. L. McMahon, and T. Byrnes, “Ising machines as hardware solvers of combinatorial optimization problems,” Nature Reviews Physics, vol. 4, no. 6, pp. 363–379, 2022.
  3. M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk et al., “Quantum annealing with manufactured spins,” Nature, vol. 473, no. 7346, pp. 194–198, 2011.
  4. A. A. Houck, H. E. Türeci, and J. Koch, “On-chip quantum simulation with superconducting circuits,” Nature Physics, vol. 8, no. 4, pp. 292–299, 2012.
  5. Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, “Coherent Ising machine based on degenerate optical parametric oscillators,” Physical Review A, vol. 88, no. 6, p. 063853, 2013.
  6. T. Honjo, T. Sonobe, K. Inaba, T. Inagaki, T. Ikuta, Y. Yamada, T. Kazama, K. Enbutsu, T. Umeki, R. Kasahara, K.-i. Kawarabayashi, and H. Takesue, “100,000-spin coherent Ising machine,” Science advances, vol. 7, no. 40, p. eabh0952, 2021.
  7. M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. G. Katzgraber, “Physics-inspired optimization for quadratic unconstrained problems using a digital annealer,” Frontiers in Physics, vol. 7, p. 48, 2019.
  8. M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, and H. Mizuno, “A 20k-spin Ising chip to solve combinatorial optimization problems with CMOS annealing,” IEEE Journal of Solid-State Circuits, vol. 51, no. 1, pp. 303–309, 2015.
  9. T. Wang, L. Wu, P. Nobel, and J. Roychowdhury, “Solving combinatorial optimisation problems using oscillator based Ising machines,” Natural Computing, vol. 20, no. 2, pp. 287–306, 2021.
  10. K. Yamamoto, K. Kawamura, K. Ando, N. Mertig, T. Takemoto, M. Yamaoka, H. Teramoto, A. Sakai, S. Takamaeda-Yamazaki, and M. Motomura, “STATICA: A 512-spin 0.25 M-weight annealing processor with an all-spin-updates-at-once architecture for combinatorial optimization with complete spin–spin interactions,” IEEE Journal of Solid-State Circuits, vol. 56, no. 1, pp. 165–178, 2020.
  11. H. Goto, K. Tatsumura, and A. R. Dixon, “Combinatorial optimization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems,” Science advances, vol. 5, no. 4, p. eaav2372, 2019.
  12. A. Lucas, “Ising formulations of many NP problems,” Frontiers in physics, p. 5, 2014.
  13. T. Huang, J. Xu, T. Luo, X. Gu, R. S. M. Goh, and W.-F. Wong, “Benchmarking quantum (-inspired) annealing hardware on practical use cases,” IEEE Transactions on Computers, 2022.
  14. C. McGeoch and P. Farré, “The D-Wave Advantage System: An Overview,” 2020.
  15. C. McGeoch, P. Farré, and K. Boothby, “The D-Wave Advantage2 Prototype,” 2022.
  16. T. Shirai and N. Togawa, “Multi-spin-flip engineering in an ising machine,” IEEE Transactions on Computers, vol. 72, no. 3, pp. 759–771, 2022.
  17. V. Choi, “Minor-embedding in adiabatic quantum computation: I. The parameter setting problem,” Quantum Information Processing, vol. 7, no. 5, pp. 193–209, 2008.
  18. ——, “Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design,” Quantum Information Processing, vol. 10, no. 3, pp. 343–353, 2011.
  19. P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidimensional knapsack problem,” Journal of heuristics, vol. 4, no. 1, pp. 63–86, 1998.
  20. Fixstars Corporation, “Fixstars Amplify AE,” 2020. [Online]. Available: https://amplify.fixstars.com/en/engine
  21. J. Cai, W. G. Macready, and A. Roy, “A practical heuristic for finding graph minors,” arXiv preprint arXiv:1406.2741, 2014.
  22. S. Zbinden, A. Bärtschi, H. Djidjev, and S. Eidenbenz, “Embedding algorithms for quantum annealers with chimera and pegasus connection topologies,” in High Performance Computing: 35th International Conference, ISC High Performance 2020, Frankfurt/Main, Germany, June 22–25, 2020, Proceedings.   Springer, 2020, pp. 187–206.
  23. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  24. B. You and T. Yamada, “A pegging approach to the precedence-constrained knapsack problem,” European journal of operational research, vol. 183, no. 2, pp. 618–632, 2007.
  25. N. Tamura, A. Taga, S. Kitagawa, and M. Banbara, “Compiling finite linear CSP into SAT,” Constraints, vol. 14, pp. 254–272, 2009.
  26. N. Chancellor, “Domain wall encoding of discrete variables for quantum annealing and QAOA,” Quantum Science and Technology, vol. 4, no. 4, p. 045004, 2019.
  27. H. Nakayama, J. Koyama, N. Yoneoka, and T. Miyazawa, “Description: third generation digital annealer technology,” Fujitsu Limited: Tokyo, Japan, 2021.
  28. Y. Sugie, Y. Yoshida, N. Mertig, T. Takemoto, H. Teramoto, A. Nakamura, I. Takigawa, S.-i. Minato, M. Yamaoka, and T. Komatsuzaki, “Minor-embedding heuristics for large-scale annealing processors with sparse hardware graphs of up to 102,400 nodes,” Soft Computing, vol. 25, pp. 1731–1749, 2021.
  29. A. Verma and M. Lewis, “Penalty and partitioning techniques to improve performance of QUBO solvers,” Discrete Optimization, vol. 44, p. 100594, 2022.
  30. S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt, “Quantum annealing for industry applications: Introduction and review,” Reports on Progress in Physics, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.