Squeezing below the ground state of motion of a continuously monitored levitating nanoparticle (2403.18790v3)
Abstract: Squeezing is a crucial resource for quantum information processing and quantum sensing. In levitated nanomechanics, squeezed states of motion can be generated via temporal control of the trapping frequency of a massive particle. However, the amount of achievable squeezing typically suffers from detrimental environmental effects. We analyze the performance of a scheme that, by embedding careful time-control of trapping potentials and fully accounting for the most relevant sources of noise -- including measurement backaction -- achieves significant levels of mechanical squeezing. The feasibility of our proposal, which is close to experimental state-of-the-art, makes it a valuable tool for quantum state engineering.
- M. Bina, F. Grasselli, and M. G. A. Paris, Continuous-variable quantum probes for structured environments, Phys. Rev. A 97, 012125 (2018).
- R. G. Torromé and S. Barzanjeh, Advances in quantum radar and quantum lidar, Progress in Quantum Electronics , 100497 (2023).
- C. Marletto and V. Vedral, Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity, Phys. Rev. Lett. 119, 240402 (2017).
- D. Ulam-Orgikh and M. Kitagawa, Spin squeezing and decoherence limit in ramsey spectroscopy, Phys. Rev. A 64, 052106 (2001).
- M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Super-resolving phase measurements with a multiphoton entangled state, Nature 429, 161 (2004).
- P. K. Hwang Lee and J. P. Dowling, A quantum Rosetta stone for interferometry, J. Mod. Opt. 49, 2325 (2002).
- M. G. Genoni, S. Olivares, and M. G. A. Paris, Optical phase estimation in the presence of phase diffusion, Phys. Rev. Lett. 106, 153603 (2011).
- R. Demkowicz-Dobrzański and L. Maccone, Using entanglement against noise in quantum metrology, Phys. Rev. Lett. 113, 250801 (2014).
- Z. Huang, C. Macchiavello, and L. Maccone, Usefulness of entanglement-assisted quantum metrology, Phys. Rev. A 94, 012101 (2016).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: Beating the standard quantum limit, Science 306, 1330 (2004).
- C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
- A. Buonanno and Y. Chen, Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers, Phys. Rev. D 69, 102004 (2004).
- J. Abadie et al., A gravitational wave observatory operating beyond the quantum shot-noise limit, Nature Physics 7, 962 (2011).
- J. Aasi et al., Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light, Nature Photonics 7, 613 (2013).
- R. C. Pooser and B. Lawrie, Ultrasensitive measurement of microcantilever displacement below the shot-noise limit, Optica 2, 393 (2015).
- F. Acernese et al. (Virgo Collaboration), Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light, Phys. Rev. Lett. 123, 231108 (2019).
- O. Romero-Isart, Quantum superposition of massive objects and collapse models, Phys. Rev. A 84, 052121 (2011).
- A. Al Balushi, W. Cong, and R. B. Mann, Optomechanical quantum cavendish experiment, Phys. Rev. A 98, 043811 (2018).
- M. Arndt and K. Hornberger, Testing the limits of quantum mechanical superpositions, Nature Physics 10, 271 (2014).
- A. Setter, J. Vovrosh, and H. Ulbricht, Characterization of non-linearities through mechanical squeezing in levitated optomechanics, Applied Physics Letters 115, 153106 (2019).
- J. Janszky and Y. Yushin, Squeezing via frequency jump, Optics Communications 59, 151 (1986).
- R. Graham, Squeezing and frequency changes in harmonic oscillations, J. Mod. Opt. 34, 873 (1987).
- J. Janszky and P. Adam, Strong squeezing by repeated frequency jumps, Phys. Rev. A 46, 6091 (1992).
- H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, USA, 2002).
- M. G. Genoni, L. Lami, and A. Serafini, Conditional and unconditional gaussian quantum dynamics, Contemp. Phys. 57, 331 (2016).
- J. Ntogramatzidis and A. Ferrante, Exact tuning of pid controllers in control feedback design, IET Control Theory Appl. 5, 565 (2011).
- C. Gardiner, P. Zoller, and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Series in Synergetics (Springer, 2004).
- T. Seberson and F. Robicheaux, Distribution of laser shot-noise energy delivered to a levitated nanoparticle, Phys. Rev. A 102, 033505 (2020).
- I. H. Malitson, Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55, 1205 (1965).
- A. C. Doherty and K. Jacobs, Feedback control of quantum systems using continuous state estimation, Phys. Rev. A 60, 2700 (1999).
- U. Shackerley-Bennett, The control of Gaussian states, Ph.D. thesis, University College London (2018).
- M. Behr, P. Benner, and J. Heiland, Invariant Galerkin Ansatz Spaces and Davison-Maki Methods for the Numerical Solution of Differential Riccati Equations, arXiv:1910.13362 (2019).
- J. Gieseler, L. Novotny, and R. Quidant, Thermal nonlinearities in a nanomechanical oscillator, Nature Physics 9, 806 (2013).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.