Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Superior Parallel Big Data Clustering through Competitive Stochastic Sample Size Optimization in Big-means (2403.18766v1)

Published 27 Mar 2024 in cs.LG, cs.AI, cs.DC, and cs.IR

Abstract: This paper introduces a novel K-means clustering algorithm, an advancement on the conventional Big-means methodology. The proposed method efficiently integrates parallel processing, stochastic sampling, and competitive optimization to create a scalable variant designed for big data applications. It addresses scalability and computation time challenges typically faced with traditional techniques. The algorithm adjusts sample sizes dynamically for each worker during execution, optimizing performance. Data from these sample sizes are continually analyzed, facilitating the identification of the most efficient configuration. By incorporating a competitive element among workers using different sample sizes, efficiency within the Big-means algorithm is further stimulated. In essence, the algorithm balances computational time and clustering quality by employing a stochastic, competitive sampling strategy in a parallel computing setting.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com