Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TGMM: Combining Parse Tree with GPU for Scalable Multilingual and Multi-Granularity Code Clone Detection (2403.18202v2)

Published 27 Mar 2024 in cs.SE

Abstract: The rapid evolution of programming languages and software systems has necessitated the implementation of multilingual and scalable clone detection tools. However, it is difficult to achieve the above requirements at the same time. Most existing tools only focus on one challenge. In this work, we propose TGMM, a tree and GPU-based tool for multilingual and multi-granularity code clone detection. By generating parse trees based on user-provided grammar files, TGMM can extract code blocks at a specified granularity and detect Type-3 clones efficiently. In order to show the performance of TGMM, we compare it with seven state-of-the-art tools in terms of recall, precision, and execution time. TGMM ranks first in execution time and precision, while its recall is comparable to the others. Moreover, we analyzed the language extensibility of TGMM across 30 mainstream programming languages. Out of these, a total of 25 languages were supported, while the remaining five currently lack the necessary grammar files. Finally, we analyzed the clone characteristics of nine popular languages at five common granularities, hoping to inspire future researchers. The source code of TGMM is available at: https://github.com/TGMM24/TGMM.git.

Summary

We haven't generated a summary for this paper yet.