Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SLACC: Simion-based Language Agnostic Code Clones (2002.03039v1)

Published 7 Feb 2020 in cs.SE

Abstract: Successful cross-language clone detection could enable researchers and developers to create robust language migration tools, facilitate learning additional programming languages once one is mastered, and promote reuse of code snippets over a broader codebase. However, identifying cross-language clones presents special challenges to the clone detection problem. A lack of common underlying representation between arbitrary languages means detecting clones requires one of the following solutions: 1) a static analysis framework replicated across each targeted language with annotations matching language features across all languages, or 2) a dynamic analysis framework that detects clones based on runtime behavior. In this work, we demonstrate the feasibility of the latter solution, a dynamic analysis approach called SLACC for cross-language clone detection. Like prior clone detection techniques, we use input/output behavior to match clones, though we overcome limitations of prior work by amplifying the number of inputs and covering more data types; and as a result, achieve better clusters than prior attempts. Since clusters are generated based on input/output behavior, SLACC supports cross-language clone detection. As an added challenge, we target a static typed language, Java, and a dynamic typed language, Python. Compared to HitoshiIO, a recent clone detection tool for Java, SLACC retrieves 6 times as many clusters and has higher precision (86.7% vs. 30.7%). This is the first work to perform clone detection for dynamic typed languages (precision = 87.3%) and the first to perform clone detection across languages that lack a common underlying representation (precision = 94.1%). It provides a first step towards the larger goal of scalable language migration tools.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. George Mathew (14 papers)
  2. Chris Parnin (19 papers)
  3. Kathryn T Stolee (1 paper)
Citations (24)

Summary

We haven't generated a summary for this paper yet.