Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

EinExprs: Contraction Paths of Tensor Networks as Symbolic Expressions (2403.18030v1)

Published 26 Mar 2024 in quant-ph and cs.MS

Abstract: Tensor Networks are graph representations of summation expressions in which vertices represent tensors and edges represent tensor indices or vector spaces. In this work, we present EinExprs.jl, a Julia package for contraction path optimization that offers state-of-art optimizers. We propose a representation of the contraction path of a Tensor Network based on symbolic expressions. Using this package the user may choose among a collection of different methods such as Greedy algorithms, or an approach based on the hypergraph partitioning problem. We benchmark this library with examples obtained from the simulation of Random Quantum Circuits (RQC), a well known example where Tensor Networks provide state-of-the-art methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube