Resonant Multi-Scalar Production in the Generic Complex Singlet Model in the Multi-TeV Region (2403.18003v2)
Abstract: We develop benchmarks for resonant di-scalar production in the generic complex singlet scalar extension of the Standard Model (SM), which contains two new scalars. These benchmarks maximize di-scalar resonant production: $pp\rightarrow h_2 \rightarrow h_1 h_1/h_1h_3/h_3h_3$, where $h_1$ is the observed SM-like Higgs boson and $h_{2,3}$ are new scalars. The decays $h_2\rightarrow h_1h_3$ and $h_2\rightarrow h_3h_3$ may be the only way to discover $h_3$, leading to a discovery of two new scalars at once. Current LHC and projected future collider (HL-LHC, FCC-ee, ILC500) constraints are used to produce benchmarks at the HL-LHC for $h_2$ masses between 250 GeV and 1 TeV and a future $pp$ collider for $h_2$ masses between 250 GeV and 12 TeV. We update the current LHC bounds on the singlet-Higgs boson mixing angle. As the mass of $h_2$ increases, certain limiting behaviors of the maximum rates are uncovered due to theoretical constraints on the parameters. These limits, which can be derived analytically, are ${\rm BR}(h_2\rightarrow h_1h_1)\rightarrow 0.25$, ${\rm BR}(h_2\rightarrow h_3h_3)\rightarrow 0.5$, and ${\rm BR}(h_2\rightarrow h_1h_3) \rightarrow 0$. It can also be shown that the maximum rates of $pp\rightarrow h_2\rightarrow h_1h_1/h_3h_3$ approach the same value. Hence, all three $h_2\rightarrow h_ih_j$ decays are promising discovery modes for $h_2$ masses below $\mathcal{O}(1\,{\rm TeV})$, while above $\mathcal{O}(1\,{\rm TeV})$ the decays $h_2\rightarrow h_1h_1/h_3h_3$ are more encouraging. Masses for $h_3$ are chosen to produce a large range of signatures including multi-b, multi-vector boson, and multi-$h_1$ production. The behavior of the maximum rates imply that in the multi-TeV region this model may be discovered in the Higgs quartet production mode before Higgs triple production is observed. The maximum di- and four Higgs production rates are similar in the multi-TeV range.
- S. Dawson et al., “Report of the Topical Group on Higgs Physics for Snowmass 2021: The Case for Precision Higgs Physics,” in Snowmass 2021. 9, 2022. arXiv:2209.07510 [hep-ph].
- ATLAS Collaboration, “A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery,” Nature 607 no. 7917, (2022) 52–59, arXiv:2207.00092 [hep-ex]. [Erratum: Nature 612, E24 (2022)].
- CMS Collaboration, A. Tumasyan et al., “A portrait of the Higgs boson by the CMS experiment ten years after the discovery,” Nature 607 no. 7917, (2022) 60–68, arXiv:2207.00043 [hep-ex].
- A. Djouadi, W. Kilian, M. Muhlleitner, and P. M. Zerwas, “Production of neutral Higgs boson pairs at LHC,” Eur. Phys. J. C 10 (1999) 45–49, arXiv:hep-ph/9904287.
- E. W. N. Glover and J. J. van der Bij, “HIGGS BOSON PAIR PRODUCTION VIA GLUON FUSION,” Nucl. Phys. B 309 (1988) 282–294.
- T. Plehn, M. Spira, and P. M. Zerwas, “Pair production of neutral Higgs particles in gluon-gluon collisions,” Nucl. Phys. B 479 (1996) 46–64, arXiv:hep-ph/9603205. [Erratum: Nucl.Phys.B 531, 655–655 (1998)].
- T. Plehn, D. L. Rainwater, and D. Zeppenfeld, “Determining the Structure of Higgs Couplings at the LHC,” Phys. Rev. Lett. 88 (2002) 051801, arXiv:hep-ph/0105325.
- J. Alison et al., “Higgs boson potential at colliders: Status and perspectives,” Rev. Phys. 5 (2020) 100045, arXiv:1910.00012 [hep-ph].
- S. Dawson, S. Dittmaier, and M. Spira, “Neutral Higgs boson pair production at hadron colliders: QCD corrections,” Phys. Rev. D 58 (1998) 115012, arXiv:hep-ph/9805244.
- S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, U. Schubert, and T. Zirke, “Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence,” Phys. Rev. Lett. 117 no. 1, (2016) 012001, arXiv:1604.06447 [hep-ph]. [Erratum: Phys.Rev.Lett. 117, 079901 (2016)].
- J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira, and J. Streicher, “Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme,” Eur. Phys. J. C 79 no. 6, (2019) 459, arXiv:1811.05692 [hep-ph].
- M. Grazzini, G. Heinrich, S. Jones, S. Kallweit, M. Kerner, J. M. Lindert, and J. Mazzitelli, “Higgs boson pair production at NNLO with top quark mass effects,” JHEP 05 (2018) 059, arXiv:1803.02463 [hep-ph].
- J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, J. Ronca, and M. Spira, “gg→HH→𝑔𝑔𝐻𝐻gg\to HHitalic_g italic_g → italic_H italic_H : Combined uncertainties,” Phys. Rev. D 103 no. 5, (2021) 056002, arXiv:2008.11626 [hep-ph].
- L. Di Luzio, R. Gröber, and M. Spannowsky, “Maxi-sizing the trilinear Higgs self-coupling: how large could it be?,” Eur. Phys. J. C 77 no. 11, (2017) 788, arXiv:1704.02311 [hep-ph].
- S. Chang and M. A. Luty, “The Higgs Trilinear Coupling and the Scale of New Physics,” JHEP 03 (2020) 140, arXiv:1902.05556 [hep-ph].
- H. Bahl, J. Braathen, and G. Weiglein, “New Constraints on Extended Higgs Sectors from the Trilinear Higgs Coupling,” Phys. Rev. Lett. 129 no. 23, (2022) 231802, arXiv:2202.03453 [hep-ph].
- G. Durieux, G. Durieux, M. McCullough, M. McCullough, E. Salvioni, and E. Salvioni, “Charting the Higgs self-coupling boundaries,” JHEP 12 (2022) 148, arXiv:2209.00666 [hep-ph]. [Erratum: JHEP 02, 165 (2023)].
- V. Silveira and A. Zee, “SCALAR PHANTOMS,” Phys. Lett. B 161 (1985) 136–140.
- D. O’Connell, M. J. Ramsey-Musolf, and M. B. Wise, “Minimal Extension of the Standard Model Scalar Sector,” Phys. Rev. D 75 (2007) 037701, arXiv:hep-ph/0611014.
- V. Barger, P. Langacker, M. McCaskey, M. J. Ramsey-Musolf, and G. Shaughnessy, “LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet,” Phys. Rev. D77 no. MAD-PH-07-1492, (2008) 035005, arXiv:0706.4311 [hep-ph].
- M. Bowen, Y. Cui, and J. D. Wells, “Narrow trans-TeV Higgs bosons and H —>>> hh decays: Two LHC search paths for a hidden sector Higgs boson,” JHEP 03 (2007) 036, arXiv:hep-ph/0701035.
- S. Profumo, M. J. Ramsey-Musolf, and G. Shaughnessy, “Singlet Higgs phenomenology and the electroweak phase transition,” JHEP 08 (2007) 010, arXiv:0705.2425 [hep-ph].
- J. M. No and M. Ramsey-Musolf, “Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production,” Phys. Rev. D 89 no. 9, (2014) 095031, arXiv:1310.6035 [hep-ph].
- G. M. Pruna and T. Robens, “Higgs singlet extension parameter space in the light of the LHC discovery,” Phys. Rev. D88 no. 11, (2013) 115012, arXiv:1303.1150 [hep-ph].
- S. Profumo, M. J. Ramsey-Musolf, C. L. Wainwright, and P. Winslow, “Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies,” Phys. Rev. D 91 no. 3, (2015) 035018, arXiv:1407.5342 [hep-ph].
- C.-Y. Chen, S. Dawson, and I. M. Lewis, “Exploring resonant di-Higgs boson production in the Higgs singlet model,” Phys. Rev. D91 no. 3, (2015) 035015, arXiv:1410.5488 [hep-ph].
- S. Dawson and I. M. Lewis, “NLO corrections to double Higgs boson production in the Higgs singlet model,” Phys. Rev. D 92 no. 9, (2015) 094023, arXiv:1508.05397 [hep-ph].
- D. Buttazzo, F. Sala, and A. Tesi, “Singlet-like Higgs bosons at present and future colliders,” JHEP 11 (2015) 158, arXiv:1505.05488 [hep-ph].
- T. Robens and T. Stefaniak, “Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1,” Eur. Phys. J. C75 no. SCIPP-15-02, (2015) 104, arXiv:1501.02234 [hep-ph].
- T. Robens and T. Stefaniak, “LHC Benchmark Scenarios for the Real Higgs Singlet Extension of the Standard Model,” Eur. Phys. J. C76 no. 5, (2016) 268, arXiv:1601.07880 [hep-ph].
- A. V. Kotwal, M. J. Ramsey-Musolf, J. M. No, and P. Winslow, “Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier,” Phys. Rev. D 94 no. 3, (2016) 035022, arXiv:1605.06123 [hep-ph].
- I. M. Lewis and M. Sullivan, “Benchmarks for Double Higgs Production in the Singlet Extended Standard Model at the LHC,” Phys. Rev. D96 no. 3, (2017) 035037, arXiv:1701.08774 [hep-ph].
- T. Huang, J. M. No, L. Pernié, M. Ramsey-Musolf, A. Safonov, M. Spannowsky, and P. Winslow, “Resonant di-Higgs boson production in the bb¯WW𝑏¯𝑏𝑊𝑊b{\bar{b}}WWitalic_b over¯ start_ARG italic_b end_ARG italic_W italic_W channel: Probing the electroweak phase transition at the LHC,” Phys. Rev. D 96 no. 3, (2017) 035007, arXiv:1701.04442 [hep-ph].
- S. Dawson, C. Englert, and T. Plehn, “Higgs Physics: It ain’t over till it’s over,” Phys. Rept. 816 (2019) 1–85, arXiv:1808.01324 [hep-ph].
- H.-L. Li, M. Ramsey-Musolf, and S. Willocq, “Probing a scalar singlet-catalyzed electroweak phase transition with resonant di-Higgs boson production in the 4b4𝑏4b4 italic_b channel,” Phys. Rev. D 100 no. 7, (2019) 075035, arXiv:1906.05289 [hep-ph].
- A. Alves, D. Gonçalves, T. Ghosh, H.-K. Guo, and K. Sinha, “Di-Higgs Blind Spots in Gravitational Wave Signals,” Phys. Lett. B 818 (2021) 136377, arXiv:2007.15654 [hep-ph].
- A. Papaefstathiou and G. White, “The electro-weak phase transition at colliders: confronting theoretical uncertainties and complementary channels,” JHEP 05 (2021) 099, arXiv:2010.00597 [hep-ph].
- S. Dawson, S. Homiller, and S. D. Lane, “Putting standard model EFT fits to work,” Phys. Rev. D 102 no. 5, (2020) 055012, arXiv:2007.01296 [hep-ph].
- S. Adhikari, I. M. Lewis, and M. Sullivan, “Beyond the Standard Model effective field theory: The singlet extended Standard Model,” Phys. Rev. D 103 no. 7, (2021) 075027, arXiv:2003.10449 [hep-ph].
- A. Papaefstathiou and G. White, “The Electro-Weak Phase Transition at Colliders: Discovery Post-Mortem,” JHEP 02 (2022) 185, arXiv:2108.11394 [hep-ph].
- S. Dawson, P. P. Giardino, and S. Homiller, “Uncovering the High Scale Higgs Singlet Model,” Phys. Rev. D 103 no. 7, (2021) 075016, arXiv:2102.02823 [hep-ph].
- D. Curtin, P. Meade, and C.-T. Yu, “Testing Electroweak Baryogenesis with Future Colliders,” JHEP 11 (2014) 127, arXiv:1409.0005 [hep-ph].
- C.-Y. Chen, J. Kozaczuk, and I. M. Lewis, “Non-resonant Collider Signatures of a Singlet-Driven Electroweak Phase Transition,” JHEP 08 (2017) 096, arXiv:1704.05844 [hep-ph].
- P. Basler, S. Dawson, C. Englert, and M. Mühlleitner, “Showcasing HH production: Benchmarks for the LHC and HL-LHC,” Phys. Rev. D 99 no. 5, (2019) 055048, arXiv:1812.03542 [hep-ph].
- H. Abouabid, A. Arhrib, D. Azevedo, J. E. Falaki, P. M. Ferreira, M. Mühlleitner, and R. Santos, “Benchmarking Di-Higgs Production in Various Extended Higgs Sector Models,” arXiv:2112.12515 [hep-ph].
- S. Adhikari, S. D. Lane, I. M. Lewis, and M. Sullivan, “Complex Scalar Singlet Model Benchmarks for Snowmass,” in Snowmass 2021. 3, 2022. arXiv:2203.07455 [hep-ph].
- S. Dawson and M. Sullivan, “Enhanced di-Higgs boson production in the complex Higgs singlet model,” Phys. Rev. D97 no. 1, (2018) 015022, arXiv:1711.06683 [hep-ph].
- R. Costa, M. Mühlleitner, M. O. P. Sampaio, and R. Santos, “Singlet Extensions of the Standard Model at LHC Run 2: Benchmarks and Comparison with the NMSSM,” JHEP 06 (2016) 034, arXiv:1512.05355 [hep-ph].
- T. Robens, T. Stefaniak, and J. Wittbrodt, “Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios,” Eur. Phys. J. C 80 no. 2, (2020) 151, arXiv:1908.08554 [hep-ph].
- A. Papaefstathiou, T. Robens, and G. Tetlalmatzi-Xolocotzi, “Triple Higgs Boson Production at the Large Hadron Collider with Two Real Singlet Scalars,” JHEP 05 (2021) 193, arXiv:2101.00037 [hep-ph].
- R. Coimbra, M. O. P. Sampaio, and R. Santos, “ScannerS: Constraining the phase diagram of a complex scalar singlet at the LHC,” Eur. Phys. J. C73 (2013) 2428, arXiv:1301.2599 [hep-ph].
- R. Costa, A. P. Morais, M. O. P. Sampaio, and R. Santos, “Two-loop stability of a complex singlet extended Standard Model,” Phys. Rev. D 92 (2015) 025024, arXiv:1411.4048 [hep-ph].
- P. M. Ferreira, “The vacuum structure of the Higgs complex singlet-doublet model,” Phys. Rev. D 94 no. 9, (2016) 096011, arXiv:1607.06101 [hep-ph].
- M. Mühlleitner, M. O. P. Sampaio, R. Santos, and J. Wittbrodt, “Phenomenological Comparison of Models with Extended Higgs Sectors,” JHEP 08 (2017) 132, arXiv:1703.07750 [hep-ph].
- P. Basler, S. Dawson, C. Englert, and M. Mühlleitner, “Di-Higgs boson peaks and top valleys: Interference effects in Higgs sector extensions,” Phys. Rev. D 101 no. 1, (2020) 015019, arXiv:1909.09987 [hep-ph].
- M. Mühlleitner, M. O. P. Sampaio, R. Santos, and J. Wittbrodt, “ScannerS: parameter scans in extended scalar sectors,” Eur. Phys. J. C 82 no. 3, (2022) 198, arXiv:2007.02985 [hep-ph].
- F. Egle, M. Mühlleitner, R. Santos, and J. a. Viana, “One-loop corrections to the Higgs boson invisible decay in a complex singlet extension of the SM,” Phys. Rev. D 106 no. 9, (2022) 095030, arXiv:2202.04035 [hep-ph].
- F. Egle, M. Mühlleitner, R. Santos, and J. a. Viana, “Electroweak corrections to Higgs boson decays in a Complex Singlet extension of the SM and their phenomenological impact,” JHEP 11 (2023) 116, arXiv:2306.04127 [hep-ph].
- V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf, and G. Shaughnessy, “Complex Singlet Extension of the Standard Model,” Phys. Rev. D79 (2009) 015018, arXiv:0811.0393 [hep-ph].
- L. Alexander-Nunneley and A. Pilaftsis, “The Minimal Scale Invariant Extension of the Standard Model,” JHEP 09 (2010) 021, arXiv:1006.5916 [hep-ph].
- S. Dawson, D. Fontes, C. Quezada-Calonge, and J. J. Sanz-Cillero, “Is the HEFT matching unique?,” Phys. Rev. D 109 no. 5, (2024) 055037, arXiv:2311.16897 [hep-ph].
- W. Chao, “First order electroweak phase transition triggered by the Higgs portal vector dark matter,” Phys. Rev. D 92 no. 1, (2015) 015025, arXiv:1412.3823 [hep-ph].
- M. Jiang, L. Bian, W. Huang, and J. Shu, “Impact of a complex singlet: Electroweak baryogenesis and dark matter,” Phys. Rev. D 93 no. 6, (2016) 065032, arXiv:1502.07574 [hep-ph].
- C.-W. Chiang, M. J. Ramsey-Musolf, and E. Senaha, “Standard Model with a Complex Scalar Singlet: Cosmological Implications and Theoretical Considerations,” Phys. Rev. D 97 no. 1, (2018) 015005, arXiv:1707.09960 [hep-ph].
- W. Cheng and L. Bian, “From inflation to cosmological electroweak phase transition with a complex scalar singlet,” Phys. Rev. D 98 no. 2, (2018) 023524, arXiv:1801.00662 [hep-ph].
- B. Grzadkowski and D. Huang, “Spontaneous CP𝐶𝑃CPitalic_C italic_P-Violating Electroweak Baryogenesis and Dark Matter from a Complex Singlet Scalar,” JHEP 08 (2018) 135, arXiv:1807.06987 [hep-ph].
- N. Chen, T. Li, Y. Wu, and L. Bian, “Complementarity of the future e+e−superscript𝑒superscript𝑒e^{+}e^{-}italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT colliders and gravitational waves in the probe of complex singlet extension to the standard model,” Phys. Rev. D 101 no. 7, (2020) 075047, arXiv:1911.05579 [hep-ph].
- C.-W. Chiang and B.-Q. Lu, “First-order electroweak phase transition in a complex singlet model with ℤ3subscriptℤ3\mathbb{Z}_{3}blackboard_Z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT symmetry,” JHEP 07 (2020) 082, arXiv:1912.12634 [hep-ph].
- G.-C. Cho, C. Idegawa, and E. Senaha, “Electroweak phase transition in a complex singlet extension of the Standard Model with degenerate scalars,” Phys. Lett. B 823 (2021) 136787, arXiv:2105.11830 [hep-ph].
- G.-C. Cho, C. Idegawa, and E. Senaha, “CP-violating effects on gravitational waves in a complex singlet extension of the Standard Model with degenerate scalars,” Phys. Rev. D 106 no. 11, (2022) 115012, arXiv:2205.12046 [hep-ph].
- G.-C. Cho, C. Idegawa, and R. Sugihara, “A complex singlet extension of the standard model and multi-critical point principle,” Phys. Lett. B 839 (2023) 137757, arXiv:2212.13029 [hep-ph].
- W. Zhang, Y. Cai, M. J. Ramsey-Musolf, and L. Zhang, “Testing Complex Singlet Scalar Cosmology at the Large Hadron Collider,” arXiv:2307.01615 [hep-ph].
- J. McDonald, “Gauge singlet scalars as cold dark matter,” Phys. Rev. D 50 (1994) 3637–3649, arXiv:hep-ph/0702143.
- D. G. Cerdeno, A. Dedes, and T. E. J. Underwood, “The Minimal Phantom Sector of the Standard Model: Higgs Phenomenology and Dirac Leptogenesis,” JHEP 09 (2006) 067, arXiv:hep-ph/0607157.
- R. K. Ellis et al., “Physics Briefing Book: Input for the European Strategy for Particle Physics Update 2020,” arXiv:1910.11775 [hep-ex].
- FCC Collaboration, A. Abada et al., “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228 no. 2, (2019) 261–623.
- CEPC Study Group Collaboration, “CEPC Conceptual Design Report: Volume 1 - Accelerator,” arXiv:1809.00285 [physics.acc-ph].
- CEPC Study Group Collaboration, M. Dong et al., “CEPC Conceptual Design Report: Volume 2 - Physics & Detector,” arXiv:1811.10545 [hep-ex].
- “The International Linear Collider Technical Design Report - Volume 1: Executive Summary,” arXiv:1306.6327 [physics.acc-ph].
- ILC Collaboration, “The International Linear Collider Technical Design Report - Volume 2: Physics,” arXiv:1306.6352 [hep-ph].
- “The International Linear Collider Technical Design Report - Volume 3.I: Accelerator \& in the Technical Design Phase,” arXiv:1306.6353 [physics.acc-ph].
- K. Kannike, “Vacuum Stability of a General Scalar Potential of a Few Fields,” Eur. Phys. J. C 76 no. 6, (2016) 324, arXiv:1603.02680 [hep-ph]. [Erratum: Eur.Phys.J.C 78, 355 (2018)].
- B. W. Lee, C. Quigg, and H. B. Thacker, “Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass,” Phys. Rev. D 16 (1977) 1519.
- B. W. Lee, C. Quigg, and H. B. Thacker, “The Strength of Weak Interactions at Very High-Energies and the Higgs Boson Mass,” Phys. Rev. Lett. 38 (1977) 883–885.
- M. S. Chanowitz, M. A. Furman, and I. Hinchliffe, “Weak Interactions of Ultraheavy Fermions,” Phys. Lett. B 78 (1978) 285.
- M. S. Chanowitz, M. A. Furman, and I. Hinchliffe, “Weak Interactions of Ultraheavy Fermions. 2.,” Nucl. Phys. B 153 (1979) 402–430.
- A. Schuessler and D. Zeppenfeld, “Unitarity constraints on MSSM trilinear couplings,” in 15th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY07), pp. 236–239. 10, 2007. arXiv:0710.5175 [hep-ph].
- ATLAS Collaboration, “Measurement of the Higgs boson production cross section in association with a vector boson and decaying into WW∗𝑊superscript𝑊∗WW^{\ast}italic_W italic_W start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT with the ATLAS detector at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,” Tech. Rep. ATLAS-CONF-2022-067, CERN, Geneva, 2022. https://cds.cern.ch/record/2842519.
- CMS Collaboration, “Measurement of the tt¯Ht¯tH\mathrm{t\overline{t}H}roman_t over¯ start_ARG roman_t end_ARG roman_H and tHtH\mathrm{tH}roman_tH production rates in the H→bb¯→Hb¯b\mathrm{H}\to\mathrm{b\overline{b}}roman_H → roman_b over¯ start_ARG roman_b end_ARG decay channel with 138fb−1138superscriptfb1138\,\mathrm{fb}^{-1}138 roman_fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of proton-proton collision data at s=13TeV𝑠13TeV\sqrt{s}=13\,\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV,” tech. rep., CERN, Geneva, 2023. https://cds.cern.ch/record/2868175.
- ATLAS Collaboration, G. Aad et al., “Measurement of the H→γγ→𝐻𝛾𝛾H\to\gamma\gammaitalic_H → italic_γ italic_γ and H→ZZ*→4ℓ→𝐻𝑍superscript𝑍→4ℓH\to ZZ^{*}\to 4\ellitalic_H → italic_Z italic_Z start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → 4 roman_ℓ cross-sections in pp𝑝𝑝ppitalic_p italic_p collisions at s=13.6𝑠13.6\sqrt{s}=13.6square-root start_ARG italic_s end_ARG = 13.6 TeV with the ATLAS detector,” arXiv:2306.11379 [hep-ex].
- CMS Collaboration, A. Hayrapetyan et al., “Measurement of the Higgs boson production via vector boson fusion and its decay into bottom quarks in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” arXiv:2308.01253 [hep-ex].
- P. Bechtle, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein, and J. Wittbrodt, “HiggsSignals-2: Probing new physics with precision Higgs measurements in the LHC 13 TeV era,” Eur. Phys. J. C 81 no. 2, (2021) 145, arXiv:2012.09197 [hep-ph].
- H. Bahl, T. Biekötter, S. Heinemeyer, C. Li, S. Paasch, G. Weiglein, and J. Wittbrodt, “HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals,” Comput. Phys. Commun. 291 (2023) 108803, arXiv:2210.09332 [hep-ph].
- T. Robens, “More Doublets and Singlets,” in 56th Rencontres de Moriond on Electroweak Interactions and Unified Theories. 5, 2022. arXiv:2205.06295 [hep-ph].
- LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., “Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector,” arXiv:1610.07922 [hep-ph].
- P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein, “HiggsSignals𝐻𝑖𝑔𝑔𝑠𝑆𝑖𝑔𝑛𝑎𝑙𝑠HiggsSignalsitalic_H italic_i italic_g italic_g italic_s italic_S italic_i italic_g italic_n italic_a italic_l italic_s: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC,” Eur. Phys. J. C 74 no. 2, (2014) 2711, arXiv:1305.1933 [hep-ph].
- P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, “HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron,” Comput. Phys. Commun. 182 (2011) 2605–2631, arXiv:1102.1898 [hep-ph].
- P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, and K. E. Williams, “𝖧𝗂𝗀𝗀𝗌𝖡𝗈𝗎𝗇𝖽𝗌−4𝖧𝗂𝗀𝗀𝗌𝖡𝗈𝗎𝗇𝖽𝗌4\mathsf{HiggsBounds}-4sansserif_HiggsBounds - 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC,” Eur. Phys. J. C 74 no. 3, (2014) 2693, arXiv:1311.0055 [hep-ph].
- P. Bechtle, D. Dercks, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein, and J. Wittbrodt, “HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era,” Eur. Phys. J. C 80 no. 12, (2020) 1211, arXiv:2006.06007 [hep-ph].
- N. Kauer and C. O’Brien, “Heavy Higgs signal–background interference in gg→VV→𝑔𝑔𝑉𝑉gg\rightarrow VVitalic_g italic_g → italic_V italic_V in the Standard Model plus real singlet,” Eur. Phys. J. C 75 (2015) 374, arXiv:1502.04113 [hep-ph].
- N. Greiner, S. Liebler, and G. Weiglein, “Interference contributions to gluon initiated heavy Higgs production in the Two-Higgs-Doublet Model,” Eur. Phys. J. C 76 no. 3, (2016) 118, arXiv:1512.07232 [hep-ph].
- M. Carena, Z. Liu, and M. Riembau, “Probing the electroweak phase transition via enhanced di-Higgs boson production,” Phys. Rev. D 97 no. 9, (2018) 095032, arXiv:1801.00794 [hep-ph].
- D. López-Val and T. Robens, “ΔΔ\Deltaroman_Δr and the W-boson mass in the singlet extension of the standard model,” Phys. Rev. D90 (2014) 114018, arXiv:1406.1043 [hep-ph].
- J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina, and L. Silvestrini, “Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future,” JHEP 12 (2016) 135, arXiv:1608.01509 [hep-ph].
- A. Ilnicka, T. Robens, and T. Stefaniak, “Constraining Extended Scalar Sectors at the LHC and beyond,” Mod. Phys. Lett. A 33 no. 10n11, (2018) 1830007, arXiv:1803.03594 [hep-ph].
- ATLAS Collaboration, G. Aad et al., “Search for heavy resonances decaying into a pair of Z bosons in the ℓ+ℓ−ℓ′+ℓ′−superscriptℓsuperscriptℓsuperscriptℓ′superscriptℓ′\ell^{+}\ell^{-}\ell^{\prime+}\ell^{\prime-}roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT ′ + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT ′ - end_POSTSUPERSCRIPT and ℓ+ℓ−νν¯superscriptℓsuperscriptℓ𝜈¯𝜈\ell^{+}\ell^{-}\nu{{\bar{\nu}}}roman_ℓ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_ℓ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT italic_ν over¯ start_ARG italic_ν end_ARG final states using 139 fb−1superscriptfb1\mathrm{fb}^{-1}roman_fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of proton–proton collisions at s=13𝑠13\sqrt{s}=13\,square-root start_ARG italic_s end_ARG = 13TeV with the ATLAS detector,” Eur. Phys. J. C 81 no. 4, (2021) 332, arXiv:2009.14791 [hep-ex].
- ATLAS Collaboration, G. Aad et al., “Search for heavy diboson resonances in semileptonic final states in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Eur. Phys. J. C 80 no. 12, (2020) 1165, arXiv:2004.14636 [hep-ex].
- ATLAS Collaboration, “Search for heavy resonances in the decay channel W+W−→eνμν→𝑊limit-from𝑊𝑒𝜈𝜇𝜈W+W-\rightarrow e\nu\mu\nuitalic_W + italic_W - → italic_e italic_ν italic_μ italic_ν in pp𝑝𝑝ppitalic_p italic_p Collisions at S=13𝑆13\sqrt{S}=13square-root start_ARG italic_S end_ARG = 13 TeV using 139 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT of data with the ATLAS detector,” Tech. Rep. ATLAS-CONF-2022-066, CERN, Geneva, 2022. http://cds.cern.ch/record/2842518.
- ATLAS Collaboration, G. Aad et al., “Search for the HH→bb¯bb¯→𝐻𝐻𝑏¯𝑏𝑏¯𝑏HH\rightarrow b\bar{b}b\bar{b}italic_H italic_H → italic_b over¯ start_ARG italic_b end_ARG italic_b over¯ start_ARG italic_b end_ARG process via vector-boson fusion production using proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 07 (2020) 108, arXiv:2001.05178 [hep-ex]. [Erratum: JHEP 01, 145 (2021), Erratum: JHEP 05, 207 (2021)].
- ATLAS Collaboration, M. Aaboud et al., “Search for Higgs boson pair production in the bb¯WW*𝑏¯𝑏𝑊superscript𝑊b\bar{b}WW^{*}italic_b over¯ start_ARG italic_b end_ARG italic_W italic_W start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT decay mode at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 04 (2019) 092, arXiv:1811.04671 [hep-ex].
- ATLAS Collaboration, M. Aaboud et al., “Search for Higgs boson pair production in the γγWW*𝛾𝛾𝑊superscript𝑊\gamma\gamma WW^{*}italic_γ italic_γ italic_W italic_W start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT channel using pp𝑝𝑝ppitalic_p italic_p collision data recorded at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Eur. Phys. J. C 78 no. 12, (2018) 1007, arXiv:1807.08567 [hep-ex].
- ATLAS Collaboration, M. Aaboud et al., “Search for Higgs boson pair production in the WW(*)WW(*)𝑊superscript𝑊𝑊superscript𝑊WW^{(*)}WW^{(*)}italic_W italic_W start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_W italic_W start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT decay channel using ATLAS data recorded at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 05 (2019) 124, arXiv:1811.11028 [hep-ex].
- ATLAS Collaboration, “Combination of searches for non-resonant and resonant Higgs boson pair production in the bb¯γγ𝑏¯𝑏𝛾𝛾b\bar{b}\gamma\gammaitalic_b over¯ start_ARG italic_b end_ARG italic_γ italic_γ, bb¯τ+τ−𝑏¯𝑏superscript𝜏superscript𝜏b\bar{b}\tau^{+}\tau^{-}italic_b over¯ start_ARG italic_b end_ARG italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT and bb¯bb¯𝑏¯𝑏𝑏¯𝑏b\bar{b}b\bar{b}italic_b over¯ start_ARG italic_b end_ARG italic_b over¯ start_ARG italic_b end_ARG decay channels using pp𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Tech. Rep. ATLAS-CONF-2021-052, CERN, Geneva, 2021. http://cds.cern.ch/record/2786865.
- CMS Collaboration, A. Tumasyan et al., “Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 04 (2022) 087, arXiv:2111.13669 [hep-ex].
- CMS Collaboration, A. M. Sirunyan et al., “Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 06 (2018) 127, arXiv:1804.01939 [hep-ex]. [Erratum: JHEP 03, 128 (2019)].
- CMS Collaboration, “Search for high mass resonances decaying into W+W−superscriptWsuperscriptW\mathrm{W^{+}}\mathrm{W^{-}}roman_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT roman_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT in the dileptonic final state with 138fb−1138superscriptfb1138\,\text{fb}^{-1}138 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of proton-proton collisions at s=13TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV,” Tech. Rep. CMS-PAS-HIG-20-016, CERN, Geneva, 2022. http://cds.cern.ch/record/2803723.
- CMS Collaboration, A. M. Sirunyan et al., “Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 03 (2020) 034, arXiv:1912.01594 [hep-ex].
- CMS Collaboration, A. M. Sirunyan et al., “Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV,” JHEP 08 (2018) 152, arXiv:1806.03548 [hep-ex].
- CMS Collaboration, A. M. Sirunyan et al., “Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” Phys. Lett. B 781 (2018) 244–269, arXiv:1710.04960 [hep-ex].
- CMS Collaboration, A. M. Sirunyan et al., “Search for production of Higgs boson pairs in the four b quark final state using large-area jets in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 01 (2019) 040, arXiv:1808.01473 [hep-ex].
- CMS Collaboration, “Search for a new resonance decaying to two scalars in the final state with two bottom quarks and two photons in proton-proton collisions at s=13TeV𝑠13TeV\sqrt{s}=13\,\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV,” Tech. Rep. CMS-PAS-HIG-21-011, CERN, Geneva, 2022. http://cds.cern.ch/record/2815230.
- CMS Collaboration, A. M. Sirunyan et al., “Search for resonant pair production of Higgs bosons in the bbZZ𝑏𝑏𝑍𝑍bbZZitalic_b italic_b italic_Z italic_Z channel in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV,” Phys. Rev. D 102 no. 3, (2020) 032003, arXiv:2006.06391 [hep-ex].
- CMS Collaboration, A. Tumasyan et al., “Search for Higgs boson pairs decaying to WW*WW*, WW*ττ𝜏𝜏\tau\tauitalic_τ italic_τ, and ττττ𝜏𝜏𝜏𝜏\tau\tau\tau\tauitalic_τ italic_τ italic_τ italic_τ in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 07 (2023) 095, arXiv:2206.10268 [hep-ex].
- CMS Collaboration, A. Tumasyan et al., “Search for heavy resonances decaying to a pair of Lorentz-boosted Higgs bosons in final states with leptons and a bottom quark pair at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG= 13 TeV,” JHEP 05 (2022) 005, arXiv:2112.03161 [hep-ex].
- CMS Collaboration, “Search for HH production in the bbWW decay mode,” Tech. Rep. CMS-PAS-HIG-21-005, CERN, Geneva, 2023. http://cds.cern.ch/record/2853597.
- CMS Collaboration, A. Tumasyan et al., “Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the ττ𝜏𝜏\tau\tauitalic_τ italic_τbb final state at 13 TeV,” JHEP 11 (2021) 057, arXiv:2106.10361 [hep-ex].
- CMS Collaboration, A. M. Sirunyan et al., “Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton–proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG =13TeV,” Phys. Lett. B 778 (2018) 101–127, arXiv:1707.02909 [hep-ex].
- ATLAS Collaboration, G. Aad et al., “Search for resonant pair production of Higgs bosons in the bb¯bb¯𝑏¯𝑏𝑏¯𝑏b\bar{b}b\bar{b}italic_b over¯ start_ARG italic_b end_ARG italic_b over¯ start_ARG italic_b end_ARG final state using pp𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Rev. D 105 no. 9, (2022) 092002, arXiv:2202.07288 [hep-ex].
- ATLAS Collaboration, G. Aad et al., “Search for resonant and non-resonant Higgs boson pair production in the bb¯τ+τ−𝑏¯𝑏superscript𝜏superscript𝜏b\overline{b}{\tau}^{+}{\tau}^{-}italic_b over¯ start_ARG italic_b end_ARG italic_τ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_τ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT decay channel using 13 TeV pp collision data from the ATLAS detector,” JHEP 07 (2023) 040, arXiv:2209.10910 [hep-ex].
- ATLAS Collaboration, G. Aad et al., “Search for Higgs boson pair production in the two bottom quarks plus two photons final state in pp𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Rev. D 106 no. 5, (2022) 052001, arXiv:2112.11876 [hep-ex].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.