Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Galaxy groups as the ultimate probe of AGN feedback (2403.17145v1)

Published 25 Mar 2024 in astro-ph.GA, astro-ph.CO, and astro-ph.HE

Abstract: The co-evolution between supermassive black holes and their environment is most directly traced by the hot atmospheres of dark matter halos. Cooling of the hot atmosphere supplies the central regions with fresh gas, igniting active galactic nuclei (AGN) with long duty cycles. Outflows from the central engine tightly couple with the surrounding gaseous medium and provide the dominant heating source preventing runaway cooling. Every major modern hydrodynamical simulation suite now includes a prescription for AGN feedback to reproduce realistic populations of galaxies. However, the mechanisms governing the feeding/feedback cycle between the central black holes and their surrounding galaxies and halos are still poorly understood. Galaxy groups are uniquely suited to constrain the mechanisms governing the cooling-heating balance, as the energy supplied by the central AGN can exceed the gravitational binding energy of halo gas particles. Here we provide a brief overview of our knowledge of the impact of AGN on the hot atmospheres of galaxy groups, with a specific focus on the thermodynamic profiles of groups. We then present our on-going efforts to improve on the implementation of AGN feedback in galaxy evolution models by providing precise benchmarks on the properties of galaxy groups. We introduce the \XMM~ Group AGN Project (X-GAP), a large program on \XMM~ targeting a sample of 49 galaxy groups out to $R_{500c}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts. ApJ 2004, 600, 580–594, [arXiv:astro-ph/astro-ph/0307202]. https://doi.org/10.1086/379875.
  2. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. MNRAS 2006, 365, 11–28, [arXiv:astro-ph/astro-ph/0508046]. https://doi.org/10.1111/j.1365-2966.2005.09675.x.
  3. Quasars and galaxy formation. A&A 1998, 331, L1–L4, [astro-ph/9801013].
  4. The distribution of supermassive black holes in the nuclei of nearby galaxies. MNRAS 1999, 308, 77–81, [arXiv:astro-ph/astro-ph/9902223]. https://doi.org/10.1046/j.1365-8711.1999.02693.x.
  5. A unified model for the evolution of galaxies and quasars. MNRAS 2000, 311, 576–588, [arXiv:astro-ph/astro-ph/9906493]. https://doi.org/10.1046/j.1365-8711.2000.03077.x.
  6. High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z~4. MNRAS 1996, 283, 1388–1404, [arXiv:astro-ph/astro-ph/9607172]. https://doi.org/10.1093/mnras/283.4.1388.
  7. Heating Hot Atmospheres with Active Galactic Nuclei. ARA&A 2007, 45, 117–175, [arXiv:astro-ph/0709.2152]. https://doi.org/10.1146/annurev.astro.45.051806.110625.
  8. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 2015, 446, 521–554, [arXiv:astro-ph.GA/1407.7040]. https://doi.org/10.1093/mnras/stu2058.
  9. The BAHAMAS project: calibrated hydrodynamical simulations for large-scale structure cosmology. MNRAS 2017, 465, 2936–2965, [arXiv:astro-ph.CO/1603.02702]. https://doi.org/10.1093/mnras/stw2792.
  10. First results from the IllustrisTNG simulations: matter and galaxy clustering. MNRAS 2018, 475, 676–698, [arXiv:astro-ph.GA/1707.03397]. https://doi.org/10.1093/mnras/stx3304.
  11. A unified model for AGN feedback in cosmological simulations of structure formation. MNRAS 2007, 380, 877–900, [arXiv:astro-ph/0705.2238]. https://doi.org/10.1111/j.1365-2966.2007.12153.x.
  12. Galaxy and Mass Assembly (GAMA): the GAMA galaxy group catalogue (G33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTCv1). MNRAS 2011, 416, 2640–2668, [arXiv:astro-ph.CO/1106.1994]. https://doi.org/10.1111/j.1365-2966.2011.19217.x.
  13. A Very Deep Chandra Observation of the Galaxy Group NGC 5813: AGN Shocks, Feedback, and Outburst History. ApJ 2015, 805, 112, [arXiv:astro-ph.HE/1503.08205]. https://doi.org/10.1088/0004-637X/805/2/112.
  14. X-Ray Cavities, Filaments, and Cold Fronts in the Core of the Galaxy Group NGC 5044. ApJ 2009, 693, 43–55, [arXiv:astro-ph/0807.3526]. https://doi.org/10.1088/0004-637X/693/1/43.
  15. Radiative Efficiency and Content of Extragalactic Radio Sources: Toward a Universal Scaling Relation between Jet Power and Radio Power. ApJ 2008, 686, 859. https://doi.org/10.1086/591416.
  16. AGN feedback in galaxy group 3C 88: cavities, shock, and jet reorientation. MNRAS 2019, 484, 3376–3392. https://doi.org/10.1093/mnras/stz229.
  17. Feedback from Active Galactic Nuclei in Galaxy Groups. Universe 2021, 7, 142, [arXiv:astro-ph.GA/2106.13259]. https://doi.org/10.3390/universe7050142.
  18. GALEX-SDSS-WISE Legacy Catalog (GSWLC): Star Formation Rates, Stellar Masses, and Dust Attenuations of 700,000 Low-redshift Galaxies. ApJS 2016, 227, 2, [arXiv:astro-ph.GA/1610.00712]. https://doi.org/10.3847/0067-0049/227/1/2.
  19. Merging groups and clusters of galaxies from the SDSS data. The catalogue of groups and potentially merging systems. A&A 2017, 602, A100, [arXiv:astro-ph.CO/1704.04477]. https://doi.org/10.1051/0004-6361/201730499.
  20. The LOFAR Two-metre Sky Survey. V. Second data release. A&A 2022, 659, A1, [arXiv:astro-ph.GA/2202.11733]. https://doi.org/10.1051/0004-6361/202142484.
  21. Spectral ageing in the relic radio galaxy B2 0924+30. A&A 2004, 427, 79–86. https://doi.org/10.1051/0004-6361:20048056.
  22. Radiative age mapping of the remnant radio galaxy B2 0924+30: the LOFAR perspective. A&A 2017, 600, A65, [arXiv:astro-ph.GA/1701.06903]. https://doi.org/10.1051/0004-6361/201630008.
  23. The X-Ray Halo Scaling Relations of Supermassive Black Holes. ApJ 2019, 884, 169, [arXiv:astro-ph.GA/1904.10972]. https://doi.org/10.3847/1538-4357/ab3c5d.
  24. Unifying the Micro and Macro Properties of AGN Feeding and Feedback. ApJ 2017, 837, 149, [arXiv:astro-ph.HE/1701.07030]. https://doi.org/10.3847/1538-4357/aa61a3.
  25. Galaxy Cluster Baryon Fractions Revisited. ApJ 2013, 778, 14, [1309.3565]. https://doi.org/10.1088/0004-637X/778/1/14.
  26. On the influence of non-thermal pressure on the mass determination of galaxy clusters. A&A 2010, 510, A76, [arXiv:astro-ph.CO/0911.0647]. https://doi.org/10.1051/0004-6361/200911855.
  27. The XXL Survey. XIII. Baryon content of the bright cluster sample. A&A 2016, 592, A12, [1512.03814]. https://doi.org/10.1051/0004-6361/201527293.
  28. HSC-XXL: Baryon budget of the 136 XXL groups and clusters. PASJ 2022, 74, 175–208, [arXiv:astro-ph.CO/2111.10080]. https://doi.org/10.1093/pasj/psab115.
  29. Feedback reshapes the baryon distribution within haloes, in halo outskirts, and beyond: the closure radius from dwarfs to massive clusters. MNRAS 2023, 524, 5391–5410, [arXiv:astro-ph.GA/2211.07659]. https://doi.org/10.1093/mnras/stad2046.
  30. Simulating Groups and the IntraGroup Medium: The Surprisingly Complex and Rich Middle Ground between Clusters and Galaxies. Universe 2021, 7, 209, [arXiv:astro-ph.GA/2106.13257]. https://doi.org/10.3390/universe7070209.
  31. SIMBA: Cosmological simulations with black hole growth and feedback. MNRAS 2019, 486, 2827–2849, [arXiv:astro-ph.GA/1901.10203]. https://doi.org/10.1093/mnras/stz937.
  32. The Romulus cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs. MNRAS 2017, 470, 1121–1139, [1607.02151]. https://doi.org/10.1093/mnras/stx1160.
  33. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe. MNRAS 2014, 444, 1518–1547, [arXiv:astro-ph.CO/1405.2921]. https://doi.org/10.1093/mnras/stu1536.
  34. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. MNRAS 2015, 446, 521–554, [1407.7040]. https://doi.org/10.1093/mnras/stu2058.
  35. Chandra Studies of the X-Ray Gas Properties of Galaxy Groups. ApJ 2009, 693, 1142–1172, [arXiv:astro-ph/0805.2320]. https://doi.org/10.1088/0004-637X/693/2/1142.
  36. Scaling properties of a complete X-ray selected galaxy group sample. A&A 2015, 573, A118, [1409.3845]. https://doi.org/10.1051/0004-6361/201423954.
  37. Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation. J. Cosmology Astropart. Phys 2019, 2019, 020, [arXiv:astro-ph.CO/1810.08629]. https://doi.org/10.1088/1475-7516/2019/03/020.
  38. Modelling baryonic feedback for survey cosmology. The Open Journal of Astrophysics 2019, 2, 4, [arXiv:astro-ph.CO/1905.06082]. https://doi.org/10.21105/astro.1905.06082.
  39. Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra. MNRAS 2020, 491, 2424–2446, [arXiv:astro-ph.CO/1906.00968]. https://doi.org/10.1093/mnras/stz3199.
  40. The thermal imprint of galaxy formation on X-ray clusters. Nature 1999, 397, 135–137, [arXiv:astro-ph/astro-ph/9810359]. https://doi.org/10.1038/16410.
  41. ASCA Observations of Groups at Radii of Low Overdensity: Implications for the Cosmic Preheating. ApJ 2002, 578, 74–89, [arXiv:astro-ph/0206362]. https://doi.org/10.1086/342472.
  42. Probing the Dark Matter and Gas Fraction in Relaxed Galaxy Groups with X-Ray Observations from Chandra and XMM-Newton. ApJ 2007, 669, 158–183, [arXiv:astro-ph/astro-ph/0610134]. https://doi.org/10.1086/521519.
  43. redMaPPer. I. Algorithm and SDSS DR8 Catalog. ApJ 2014, 785, 104, [arXiv:astro-ph.CO/1303.3562]. https://doi.org/10.1088/0004-637X/785/2/104.
  44. Tinker, J.L. A Self-Calibrating Halo-Based Group Finder: Application to SDSS. ApJ 2021, 923, 154, [arXiv:astro-ph.CO/2010.02946]. https://doi.org/10.3847/1538-4357/ac2aaa.
  45. AXES-SDSS: comparison of SDSS galaxy groups with All-sky X-ray Extended Sources. A&A subm. 2024.
  46. The thermal imprint of galaxy formation on X-ray clusters. Nature 1999, 397, 135–137, [arXiv:astro-ph/9810359]. https://doi.org/10.1038/16410.
  47. The GEMS project: X-ray analysis and statistical properties of the group sample. MNRAS 2004, 350, 1511–1535, [arXiv:astro-ph/0402439]. https://doi.org/10.1111/j.1365-2966.2004.07742.x.
  48. The SRG/eROSITA All-Sky Survey: Constraints on AGN Feedback in Galaxy Groups. arXiv e-prints 2024, p. arXiv:2401.17276, [arXiv:astro-ph.CO/2401.17276]. https://doi.org/10.48550/arXiv.2401.17276.
  49. The cool-core bias in X-ray galaxy cluster samples. I. Method and application to HIFLUGCS. A&\&&A 2011, 526, A79. https://doi.org/10.1051/0004-6361/201015856.
  50. A new X-ray-selected sample of very extended galaxy groups from the ROSAT All-Sky Survey. A&A 2018, 619, A162, [arXiv:astro-ph.CO/1809.02982]. https://doi.org/10.1051/0004-6361/201833062.
  51. Toward the low-scatter selection of X-ray clusters. Galaxy cluster detection with eROSITA through cluster outskirts. A&A 2020, 634, A8, [arXiv:astro-ph.CO/1912.01024]. https://doi.org/10.1051/0004-6361/201936131.
  52. The gravitational field of X-COP galaxy clusters. A&A 2022, 662, A123, [arXiv:astro-ph.CO/2205.01110]. https://doi.org/10.1051/0004-6361/202142507.
  53. Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample. A&A 2019, 621, A41, [1805.00042]. https://doi.org/10.1051/0004-6361/201833325.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.