Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor network formulation of symmetry protected topological phases in mixed states (2403.17069v2)

Published 25 Mar 2024 in cond-mat.str-el and quant-ph

Abstract: We define and classify symmetry-protected topological (SPT) phases in mixed states based on the tensor network formulation of the density matrix. In one dimension, we introduce strong injective matrix product density operators (MPDO), which describe a broad class of short-range correlated mixed states, including the locally decohered SPT states. We map strong injective MPDO to a pure state in the doubled Hilbert space and define the SPT phases according to the cohomology class of the symmetry group in the doubled state. Although the doubled state exhibits an enlarged symmetry, the possible SPT phases are also constrained by the Hermiticity and the semi-positivity of the density matrix. We here obtain a complete classification of SPT phases with a direct product of strong $G$ and weak $K$ unitary symmetry given by the cohomology group $H2(G, \text{U}(1))\oplus H1(K, H1(G, \text{U}(1)))$. The SPT phases in our definition are preserved under symmetric local circuits consisting of non-degenerate channels. This motivates an alternative definition of SPT phases according to the equivalence class of mixed states under a ``one-way" connection using symmetric non-degenerate channels. In locally purifiable MPDO with strong symmetry, we prove that this alternative definition reproduces the cohomology classification. We further extend our results to two-dimensional mixed states described by strong semi-injective tensor network density operators and classify the possible SPT phases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Z.-C. Gu and X.-G. Wen, Physical Review B 80, 155131 (2009).
  2. T. Senthil, Annu. Rev. Condens. Matter Phys. 6, 299 (2015).
  3. M. Den Nijs and K. Rommelse, Physical Review B 40, 4709 (1989).
  4. T. Kennedy and H. Tasaki, Physical review b 45, 304 (1992).
  5. F. Pollmann and A. M. Turner, Physical review b 86, 125441 (2012).
  6. M. McGinley and N. R. Cooper, Nature Physics 16, 1181 (2020).
  7. M.-D. Choi, Linear Algebra and its Applications 10, 285 (1975).
  8. A. Jamiołkowski, Reports on Mathematical Physics 3, 275 (1972).
  9. R. Ma and C. Wang, Physical Review X 13, 031016 (2023).
  10. A. Coser and D. Pérez-García, Quantum 3, 174 (2019).
  11. M. B. Hastings, Journal of statistical mechanics: theory and experiment 2007, P08024 (2007).
  12. M. B. Hastings, Physical review letters 93, 140402 (2004).
  13. M. B. Hastings and T. Koma, Communications in mathematical physics 265, 781 (2006).
  14. M. Michałek and Y. Shitov, IEEE Transactions on Information Theory 65, 5239 (2019).
  15. M. Rahaman, IEEE Transactions on Information Theory 66, 147 (2019).
  16. M. Levin, Communications in Mathematical Physics 378, 1081–1106 (2020).
  17. B. Buča and T. Prosen, New Journal of Physics 14, 073007 (2012).
  18. V. V. Albert and L. Jiang, Physical Review A 89, 022118 (2014).
  19. D. V. Else and C. Nayak, Physical Review B 90 (2014), 10.1103/physrevb.90.235137.
  20. S. Roberts and S. D. Bartlett, Phys. Rev. X 10, 031041 (2020).
  21. R. Ma and A. Turzillo, arXiv preprint arXiv:2403.13280  (2024).
Citations (20)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com