Symmetry Protected Topological Phases of Mixed States in the Doubled Space (2403.13280v3)
Abstract: The interplay of symmetry and topology in quantum many-body mixed states has recently garnered significant interest. In a phenomenon not seen in pure states, mixed states can exhibit average symmetries -- symmetries that act on component states while leaving the ensemble invariant. In this work, we systematically characterize symmetry protected topological (SPT) phases of short-range entangled (SRE) mixed states of spin systems -- protected by both average and exact symmetries -- by studying their pure Choi states in a doubled Hilbert space, where the familiar notions and tools for SRE and SPT pure states apply. This advantage of the doubled space comes with a price: extra symmetries as well as subtleties around how hermiticity and positivity of the original density matrix constrain the possible SPT invariants. Nevertheless, the doubled space perspective allows us to obtain a systematic classification of mixed-state SPT (MSPT) phases. We also investigate the robustness of MSPT invariants under symmetric finite-depth quantum channels, the bulk-boundary correspondence for MSPT phases, and the consequences of the MSPT invariants for the separability of mixed states and the symmetry-protected sign problem. In addition to MSPT phases, we study the patterns of spontaneous symmetry breaking (SSB) of mixed states, including the phenomenon of exact-to-average SSB, and the order parameters that detect them. Mixed state SSB is related to an ingappability constraint on symmetric Lindbladian dynamics.
- John McGreevy, “Generalized Symmetries in Condensed Matter,” Annual Review of Condensed Matter Physics 14, 57–82 (2023), arXiv:2204.03045 [cond-mat.str-el] .
- Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature (London) 551, 579–584 (2017), arXiv:1707.04344 [quant-ph] .
- John Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018), arXiv:1801.00862 [quant-ph] .
- Caroline de Groot, Alex Turzillo, and Norbert Schuch, “Symmetry Protected Topological Order in Open Quantum Systems,” Quantum 6, 856 (2022), arXiv:2112.04483 [quant-ph] .
- Ruochen Ma and Chong Wang, “Average Symmetry-Protected Topological Phases,” Physical Review X 13, 031016 (2023), arXiv:2209.02723 [cond-mat.str-el] .
- Ruochen Ma, Jian-Hao Zhang, Zhen Bi, Meng Cheng, and Chong Wang, “Topological Phases with Average Symmetries: the Decohered, the Disordered, and the Intrinsic,” arXiv e-prints , arXiv:2305.16399 (2023), arXiv:2305.16399 [cond-mat.str-el] .
- Jong Yeon Lee, Yi-Zhuang You, and Cenke Xu, “Symmetry protected topological phases under decoherence,” arXiv e-prints , arXiv:2210.16323 (2022a), arXiv:2210.16323 [cond-mat.str-el] .
- Yimu Bao, Ruihua Fan, Ashvin Vishwanath, and Ehud Altman, “Mixed-state topological order and the errorfield double formulation of decoherence-induced transitions,” arXiv e-prints , arXiv:2301.05687 (2023), arXiv:2301.05687 [quant-ph] .
- Ruihua Fan, Yimu Bao, Ehud Altman, and Ashvin Vishwanath, “Diagnostics of mixed-state topological order and breakdown of quantum memory,” arXiv e-prints , arXiv:2301.05689 (2023), arXiv:2301.05689 [quant-ph] .
- Jong Yeon Lee, Chao-Ming Jian, and Cenke Xu, “Quantum Criticality Under Decoherence or Weak Measurement,” PRX Quantum 4, 030317 (2023), arXiv:2301.05238 [cond-mat.stat-mech] .
- Tsung-Cheng Lu, Zhehao Zhang, Sagar Vijay, and Timothy H. Hsieh, “Mixed-State Long-Range Order and Criticality from Measurement and Feedback,” PRX Quantum 4, 030318 (2023), arXiv:2303.15507 [cond-mat.str-el] .
- Xie Chen, Zheng-Cheng Gu, and Xiao-Gang Wen, “Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order,” Phys. Rev. B 82, 155138 (2010), arXiv:1004.3835 [cond-mat.str-el] .
- Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-Gang Wen, “Symmetry protected topological orders and the group cohomology of their symmetry group,” Phys. Rev. B 87, 155114 (2013), arXiv:1106.4772 [cond-mat.str-el] .
- M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Reviews of Modern Physics 82, 3045–3067 (2010), arXiv:1002.3895 [cond-mat.mes-hall] .
- Xiao-Liang Qi and Shou-Cheng Zhang, “Topological insulators and superconductors,” Reviews of Modern Physics 83, 1057–1110 (2011), arXiv:1008.2026 [cond-mat.mes-hall] .
- Ian Affleck, Tom Kennedy, Elliott H Lieb, and Hal Tasaki, “Valence bond ground states in isotropic quantum antiferromagnets,” Communications in Mathematical Physics 115, 477–528 (1988).
- M. B. Hastings and Xiao-Gang Wen, “Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance,” Phys. Rev. B 72, 045141 (2005), arXiv:cond-mat/0503554 [cond-mat.str-el] .
- Yu-Hsueh Chen and Tarun Grover, “Separability transitions in topological states induced by local decoherence,” arXiv e-prints , arXiv:2309.11879 (2023a), arXiv:2309.11879 [quant-ph] .
- Yu-Hsueh Chen and Tarun Grover, “Symmetry-enforced many-body separability transitions,” arXiv e-prints , arXiv:2310.07286 (2023b), arXiv:2310.07286 [quant-ph] .
- Yi-Zhuang You, Zhen Bi, Alex Rasmussen, Kevin Slagle, and Cenke Xu, “Wave Function and Strange Correlator of Short-Range Entangled States,” Phys. Rev. Lett. 112, 247202 (2014), arXiv:1312.0626 [cond-mat.str-el] .
- Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008), arXiv:0802.3537 [cond-mat.mes-hall] .
- M. Kliesch, D. Gross, and J. Eisert, “Matrix-Product Operators and States: NP-Hardness and Undecidability,” Phys. Rev. Lett. 113, 160503 (2014), arXiv:1404.4466 [quant-ph] .
- Tyler D. Ellison, Kohtaro Kato, Zi-Wen Liu, and Timothy H. Hsieh, “Symmetry-protected sign problem and magic in quantum phases of matter,” Quantum 5, 612 (2021), arXiv:2010.13803 [cond-mat.str-el] .
- Andrea Coser and David Pérez-García, “Classification of phases for mixed states via fast dissipative evolution,” Quantum 3, 174 (2019), arXiv:1810.05092 [quant-ph] .
- Shengqi Sang, Yijian Zou, and Timothy H. Hsieh, “Mixed-state Quantum Phases: Renormalization and Quantum Error Correction,” arXiv e-prints , arXiv:2310.08639 (2023), arXiv:2310.08639 [quant-ph] .
- Tibor Rakovszky, Sarang Gopalakrishnan, and Curt von Keyserlingk, “Defining stable phases of open quantum systems,” arXiv e-prints , arXiv:2308.15495 (2023), arXiv:2308.15495 [quant-ph] .
- Eduardo Fradkin, “Disorder Operators and Their Descendants,” Journal of Statistical Physics 167, 427–461 (2017), arXiv:1610.05780 [cond-mat.stat-mech] .
- John Preskill, ‘‘Lecture notes for physics 229: Quantum information and computation,” California Institute of Technology 16, 1–8 (1998).
- Berislav Buča and Tomaž Prosen, “A note on symmetry reductions of the lindblad equation: transport in constrained open spin chains,” New Journal of Physics 14, 073007 (2012).
- Norbert Schuch, David Pérez-García, and Ignacio Cirac, “Classifying quantum phases using matrix product states and projected entangled pair states,” Physical Review B 84 (2011), 10.1103/physrevb.84.165139.
- F. Verstraete and J. I. Cirac, “Matrix product states represent ground states faithfully,” Phys. Rev. B 73, 094423 (2006), arXiv:cond-mat/0505140 [cond-mat.str-el] .
- F. Verstraete, V. Murg, and J. I. Cirac, “Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems,” Advances in Physics 57, 143–224 (2008), arXiv:0907.2796 [quant-ph] .
- Ulrich Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Annals of Physics 326, 96–192 (2011), arXiv:1008.3477 [cond-mat.str-el] .
- Ignacio Cirac, David Perez-Garcia, Norbert Schuch, and Frank Verstraete, “Matrix Product States and Projected Entangled Pair States: Concepts, Symmetries, and Theorems,” arXiv e-prints , arXiv:2011.12127 (2020), arXiv:2011.12127 [quant-ph] .
- Michael M. Wolf, Frank Verstraete, Matthew B. Hastings, and J. Ignacio Cirac, “Area Laws in Quantum Systems: Mutual Information and Correlations,” Phys. Rev. Lett. 100, 070502 (2008), arXiv:0704.3906 [quant-ph] .
- J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete, “Matrix product density operators: Renormalization fixed points and boundary theories,” Annals of Physics 378, 100–149 (2017), arXiv:1606.00608 [quant-ph] .
- Paolo Zanardi, “Entanglement of quantum evolutions,” Phys. Rev. A 63, 040304 (2001), arXiv:quant-ph/0010074 [quant-ph] .
- Gemma De las Cuevas, Norbert Schuch, David Pérez-García, and J. Ignacio Cirac, “Purifications of multipartite states: limitations and constructive methods,” New Journal of Physics 15, 123021 (2013), arXiv:1308.1914 [quant-ph] .
- Xie Chen, Yuan-Ming Lu, and Ashvin Vishwanath, “Symmetry-protected topological phases from decorated domain walls,” Nature Communications 5, 3507 (2014), arXiv:1303.4301 [cond-mat.str-el] .
- Kasper Duivenvoorden, Mohsin Iqbal, Jutho Haegeman, Frank Verstraete, and Norbert Schuch, “Entanglement phases as holographic duals of anyon condensates,” Phys. Rev. B 95, 235119 (2017), arXiv:1702.08469 [cond-mat.str-el] .
- Frank Pollmann, Ari M. Turner, Erez Berg, and Masaki Oshikawa, “Entanglement spectrum of a topological phase in one dimension,” Phys. Rev. B 81, 064439 (2010), arXiv:0910.1811 [cond-mat.str-el] .
- Frank Pollmann, Erez Berg, Ari M. Turner, and Masaki Oshikawa, “Symmetry protection of topological phases in one-dimensional quantum spin systems,” Phys. Rev. B 85, 075125 (2012), arXiv:0909.4059 [cond-mat.str-el] .
- Frank Pollmann and Ari M. Turner, “Detection of symmetry-protected topological phases in one dimension,” Phys. Rev. B 86, 125441 (2012), arXiv:1204.0704 [cond-mat.str-el] .
- Ken Shiozaki and Shinsei Ryu, “Matrix product states and equivariant topological field theories for bosonic symmetry-protected topological phases in (1+1) dimensions,” Journal of High Energy Physics 2017, 100 (2017a), arXiv:1607.06504 [cond-mat.str-el] .
- Ari M. Turner, Frank Pollmann, and Erez Berg, “Topological phases of one-dimensional fermions: An entanglement point of view,” Phys. Rev. B 83, 075102 (2011), arXiv:1008.4346 [cond-mat.str-el] .
- Qing-Rui Wang, Shang-Qiang Ning, and Meng Cheng, “Domain Wall Decorations, Anomalies and Spectral Sequences in Bosonic Topological Phases,” arXiv e-prints , arXiv:2104.13233 (2021), arXiv:2104.13233 [cond-mat.str-el] .
- Davide Gaiotto and Theo Johnson-Freyd, “Symmetry protected topological phases and generalized cohomology,” Journal of High Energy Physics 2019, 7 (2019), arXiv:1712.07950 [hep-th] .
- Hassan Shapourian, Ken Shiozaki, and Shinsei Ryu, “Many-Body Topological Invariants for Fermionic Symmetry-Protected Topological Phases,” Phys. Rev. Lett. 118, 216402 (2017), arXiv:1607.03896 [cond-mat.str-el] .
- Xie Chen and Ashvin Vishwanath, “Towards Gauging Time-Reversal Symmetry: A Tensor Network Approach,” Physical Review X 5, 041034 (2015), arXiv:1401.3736 [cond-mat.str-el] .
- Angina Seng, “Group cohomology of product with swapping (twisting) factors,” Mathematics Stack Exchange, uRL:https://math.stackexchange.com/q/3051498 (version: 2018-12-24), https://math.stackexchange.com/q/3051498 .
- Arun Debray, “Bordism for the 2-group symmetries of the heterotic and CHL strings,” arXiv e-prints , arXiv:2304.14764 (2023), arXiv:2304.14764 [math.AT] .
- Michael Levin and Zheng-Cheng Gu, “Braiding statistics approach to symmetry-protected topological phases,” Phys. Rev. B 86, 115109 (2012), arXiv:1202.3120 [cond-mat.str-el] .
- Ken Shiozaki and Shinsei Ryu, “Matrix product states and equivariant topological field theories for bosonic symmetry-protected topological phases in (1+1) dimensions,” Journal of High Energy Physics 2017, 100 (2017b), arXiv:1607.06504 [cond-mat.str-el] .
- Jutho Haegeman, David Pérez-García, Ignacio Cirac, and Norbert Schuch, “Order Parameter for Symmetry-Protected Phases in One Dimension,” Phys. Rev. Lett. 109, 050402 (2012), arXiv:1201.4174 [cond-mat.str-el] .
- Xie Chen, Zheng-Xin Liu, and Xiao-Gang Wen, “Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations,” Phys. Rev. B 84, 235141 (2011), arXiv:1106.4752 [cond-mat.str-el] .
- M. B. Hastings, “How quantum are non-negative wavefunctions?” Journal of Mathematical Physics 57, 015210 (2016), arXiv:1506.08883 [quant-ph] .
- Lorenzo Piroli and J. Ignacio Cirac, “Quantum Cellular Automata, Tensor Networks, and Area Laws,” Phys. Rev. Lett. 125, 190402 (2020), arXiv:2007.15371 [quant-ph] .
- Robert Raussendorf and Hans J Briegel, “A one-way quantum computer,” Physical review letters 86, 5188 (2001).
- F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, “Criticality, the Area Law, and the Computational Power of Projected Entangled Pair States,” Phys. Rev. Lett. 96, 220601 (2006), arXiv:quant-ph/0601075 [quant-ph] .
- Lukasz Fidkowski and Alexei Kitaev, “Topological phases of fermions in one dimension,” Phys. Rev. B 83, 075103 (2011), arXiv:1008.4138 [cond-mat.str-el] .
- Dominic V. Else and Chetan Nayak, “Classifying symmetry-protected topological phases through the anomalous action of the symmetry on the edge,” Phys. Rev. B 90, 235137 (2014), arXiv:1409.5436 [cond-mat.str-el] .
- M. Wolf, “Quantum channels and operations: Guided tour,” Lecture Notes (2012).
- Michael Levin, “Constraints on Order and Disorder Parameters in Quantum Spin Chains,” Communications in Mathematical Physics 378, 1081–1106 (2020), arXiv:1903.09028 [cond-mat.str-el] .
- M. B. Hastings, “Locality in Quantum and Markov Dynamics on Lattices and Networks,” Phys. Rev. Lett. 93, 140402 (2004a), arXiv:cond-mat/0405587 [cond-mat.stat-mech] .
- Angelo Lucia, Toby S. Cubitt, Spyridon Michalakis, and David Pérez-García, “Rapid mixing and stability of quantum dissipative systems,” Phys. Rev. A 91, 040302 (2015), arXiv:1409.7809 [quant-ph] .
- Toby S. Cubitt, Angelo Lucia, Spyridon Michalakis, and David Perez-Garcia, “Stability of Local Quantum Dissipative Systems,” Communications in Mathematical Physics 337, 1275–1315 (2015), arXiv:1303.4744 [quant-ph] .
- Fei Song, Shunyu Yao, and Zhong Wang, “Non-Hermitian skin effect and chiral damping in open quantum systems,” arXiv e-prints , arXiv:1904.08432 (2019), arXiv:1904.08432 [cond-mat.quant-gas] .
- David Poulin, “Lieb-Robinson Bound and Locality for General Markovian Quantum Dynamics,” Phys. Rev. Lett. 104, 190401 (2010), arXiv:1003.3675 [quant-ph] .
- Elliott Lieb, Theodore Schultz, and Daniel Mattis, “Two soluble models of an antiferromagnetic chain,” Annals of Physics 16, 407–466 (1961).
- Masaki Oshikawa, “Commensurability, Excitation Gap, and Topology in Quantum Many-Particle Systems on a Periodic Lattice,” Phys. Rev. Lett. 84, 1535–1538 (2000), arXiv:cond-mat/9911137 [cond-mat.str-el] .
- M. B. Hastings, ‘‘Lieb-Schultz-Mattis in higher dimensions,” Phys. Rev. B 69, 104431 (2004b), arXiv:cond-mat/0305505 [cond-mat.str-el] .
- Kohei Kawabata, Ramanjit Sohal, and Shinsei Ryu, “Lieb-Schultz-Mattis Theorem in Open Quantum Systems,” arXiv e-prints , arXiv:2305.16496 (2023), arXiv:2305.16496 [cond-mat.stat-mech] .
- Jutho Haegeman, Karel Van Acoleyen, Norbert Schuch, J. Ignacio Cirac, and Frank Verstraete, “Gauging Quantum States: From Global to Local Symmetries in Many-Body Systems,” Physical Review X 5, 011024 (2015), arXiv:1407.1025 [quant-ph] .
- Jacob C. Bridgeman and Christopher T. Chubb, “Hand-waving and interpretive dance: an introductory course on tensor networks,” Journal of Physics A Mathematical General 50, 223001 (2017), arXiv:1603.03039 [quant-ph] .