Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fidelity of Wormhole Teleportation in Finite-qubit Systems (2403.16793v3)

Published 25 Mar 2024 in quant-ph

Abstract: The rapid development of quantum science and technology is leading us into an era where quantum many-body systems can be comprehended through quantum simulations. Holographic duality, which states gravity and spacetime can emerge from strongly interacting systems, then offers a natural avenue for the experimental study of gravity physics without delving into experimentally infeasible high energies. A prominent example is the simulation of traversable wormholes through the wormhole teleportation protocol, attracting both theoretical and experimental attention. In this work, we develop the theoretical framework for computing the fidelity of wormhole teleportation in $N$-qubit systems with all-to-all interactions, quantified by mutual information and entanglement negativity. The main technique is the scramblon effective theory, which captures universal out-of-time-order correlations in generic chaotic systems. We clarify that strong couplings between the two systems are essential for simulating the probe limit of semi-classical traversable wormholes using strongly interacting systems with near-maximal chaos. However, the teleportation signal diminishes rapidly when reducing the system size $N$, requiring a large number of qubits to observe a sharp signature of emergent geometry by simulating the Sachdev-Ye-Kitaev model. This includes both the causal time-order of signals and the asymmetry of the teleportation signal for coupling with different signs. As a comparison, the teleportation signal increases when reducing $N$ in weakly interacting systems. We also analyze the fidelity of the generalized encoding scheme in fermionic string operators.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308, 284 (1993), arXiv:gr-qc/9310026 .
  2. L. Susskind, The World as a hologram, J. Math. Phys. 36, 6377 (1995), arXiv:hep-th/9409089 .
  3. J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200 .
  4. P. Gao, D. L. Jafferis, and A. C. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12, 151, arXiv:1608.05687 [hep-th] .
  5. J. Maldacena, D. Stanford, and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65, 1700034 (2017), arXiv:1704.05333 [hep-th] .
  6. P. Gao and H. Liu, Regenesis and quantum traversable wormholes, JHEP 10, 048, arXiv:1810.01444 [hep-th] .
  7. P. Gao and D. L. Jafferis, A traversable wormhole teleportation protocol in the SYK model, JHEP 07, 097, arXiv:1911.07416 [hep-th] .
  8. J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61, 781 (2013), arXiv:1306.0533 [hep-th] .
  9. A. Kitaev, A simple model of quantum holography, Talks at KITP http://online.kitp.ucsb.edu/online/entangled15/kitaev/ and http://online.kitp.ucsb.edu/online/entangled15/kitaev2/ (2015).
  10. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94, 106002 (2016), arXiv:1604.07818 [hep-th] .
  11. J. Maldacena, D. Stanford, and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016, 12C104 (2016a), arXiv:1606.01857 [hep-th] .
  12. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993), arXiv:cond-mat/9212030 .
  13. P. Gao, Commuting SYK: a pseudo-holographic model, JHEP 01, 149, arXiv:2306.14988 [hep-th] .
  14. Y. Gu, A. Kitaev, and P. Zhang, A two-way approach to out-of-time-order correlators, JHEP 03, 133, arXiv:2111.12007 [hep-th] .
  15. D. Stanford, Z. Yang, and S. Yao, Subleading Weingartens, JHEP 02, 200, arXiv:2107.10252 [hep-th] .
  16. P. Zhang, Information scrambling and entanglement dynamics of complex Brownian Sachdev-Ye-Kitaev models, JHEP 04, 105, arXiv:2301.03189 [cond-mat.str-el] .
  17. P. Zhang and Y. Gu, Operator size distribution in large N quantum mechanics of Majorana fermions, JHEP 10, 018, arXiv:2212.04358 [cond-mat.str-el] .
  18. P. Zhang and Z. Yu, Dynamical Transition of Operator Size Growth in Quantum Systems Embedded in an Environment, Phys.Rev,Lett. 130, 250401 (2023), arXiv:2211.03535 [quant-ph] .
  19. Z. Liu and P. Zhang, Signature of Scramblon Effective Field Theory in Random Spin Models, Phys. Rev. Lett. 132, 060201 (2024), arXiv:2306.05678 [quant-ph] .
  20. A. Kitaev and S. J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05, 183, arXiv:1711.08467 [hep-th] .
  21. Y. Gu, A. Kitaev, and P. Zhang, Wormhole Teleportation in Large-N𝑁Nitalic_N Quantum Mechanics,  to appear .
  22. N. Graham and K. D. Olum, Achronal averaged null energy condition, Phys. Rev. D 76, 064001 (2007), arXiv:0705.3193 [gr-qc] .
  23. W. R. Kelly and A. C. Wall, Holographic proof of the averaged null energy condition, Phys. Rev. D 90, 106003 (2014), [Erratum: Phys.Rev.D 91, 069902 (2015)], arXiv:1408.3566 [gr-qc] .
  24. E.-A. Kontou and K. D. Olum, Averaged null energy condition in a classical curved background, Phys. Rev. D 87, 064009 (2013), arXiv:1212.2290 [gr-qc] .
  25. E.-A. Kontou and K. D. Olum, Proof of the averaged null energy condition in a classical curved spacetime using a null-projected quantum inequality, Phys. Rev. D 92, 124009 (2015), arXiv:1507.00297 [gr-qc] .
  26. A. C. Wall, Proving the Achronal Averaged Null Energy Condition from the Generalized Second Law, Phys. Rev. D 81, 024038 (2010), arXiv:0910.5751 [gr-qc] .
  27. D. Hochberg and M. Visser, The Null energy condition in dynamic wormholes, Phys. Rev. Lett. 81, 746 (1998), arXiv:gr-qc/9802048 .
  28. M. Visser, Lorentzian wormholes: From Einstein to Hawking (1995).
  29. M. Visser, S. Kar, and N. Dadhich, Traversable wormholes with arbitrarily small energy condition violations, Phys. Rev. Lett. 90, 201102 (2003), arXiv:gr-qc/0301003 .
  30. T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys. B 253, 173 (1985a).
  31. T. Dray and G. ’t Hooft, The Effect of Spherical Shells of Matter on the Schwarzschild Black Hole, Commun. Math. Phys. 99, 613 (1985b).
  32. W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57, 107 (1976).
  33. J. M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04, 021, arXiv:hep-th/0106112 .
  34. P. Zhang, Quantum entanglement in the Sachdev—Ye—Kitaev model and its generalizations, Front. Phys. (Beijing) 17, 43201 (2022), arXiv:2203.01513 [cond-mat.str-el] .
  35. Y. Gu, A. Lucas, and X.-L. Qi, Spread of entanglement in a Sachdev-Ye-Kitaev chain, JHEP 09, 120, arXiv:1708.00871 [hep-th] .
  36. J. Maldacena and X.-L. Qi, Eternal traversable wormhole,   (2018), arXiv:1804.00491 [hep-th] .
  37. J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, JHEP 08, 106, arXiv:1503.01409 [hep-th] .
  38. S. H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03, 067, arXiv:1306.0622 [hep-th] .
  39. D. A. Roberts, D. Stanford, and L. Susskind, Localized shocks, JHEP 03, 051, arXiv:1409.8180 [hep-th] .
  40. S. H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05, 132, arXiv:1412.6087 [hep-th] .
  41. A. Kitaev, talk given at fundamental physics prize symposium (2014).
  42. Y. Gu and A. Kitaev, On the relation between the magnitude and exponent of OTOCs, JHEP 02, 075, arXiv:1812.00120 [hep-th] .
  43. Here, η𝜂\etaitalic_η is some Grassmann number.
  44. A. Altland and B. D. Simons, Condensed matter field theory (Cambridge university press, 2010).
  45. P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09, 120, arXiv:0708.4025 [hep-th] .
  46. S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95, 134302 (2017), arXiv:1610.04619 [cond-mat.str-el] .
  47. S.-K. Jian and H. Yao, Solvable Sachdev-Ye-Kitaev models in higher dimensions: from diffusion to many-body localization, Phys. Rev. Lett. 119, 206602 (2017), arXiv:1703.02051 [cond-mat.str-el] .
  48. C. Peng, Vector models and generalized SYK models, JHEP 05, 129, arXiv:1704.04223 [hep-th] .
  49. M. Fremling, M. Haque, and L. Fritz, Bipartite Sachdev-Ye-Kitaev model: Conformal limit and level statistics, Phys. Rev. D 105, 066017 (2022), arXiv:2111.15215 [cond-mat.str-el] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com