Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Resonant Beam Communications: A New Design Paradigm and Challenges (2403.16699v1)

Published 25 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: Resonant beam communications (RBCom), which adopt oscillating photons between two separate retroreflectors for information transmission, exhibit potential advantages over other types of wireless optical communications (WOC). However, echo interference generated by the modulated beam reflected from the receiver affects the transmission of the desired information. To tackle this challenge, a synchronization-based point-to-point RBCom system is proposed to eliminate the echo interference, and the design for the transmitter and receiver is discussed. Subsequently, the performance of the proposed RBCom is evaluated and compared with that of visible light communications (VLC) and free space optical communications (FOC). Finally, future research directions are outlined and several implementation challenges of RBCom systems are highlighted.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 2231–2258, 4th Quart., 2014.
  2. A. Jovicic, J. Li, and T. Richardson, “Visible light communication: Opportunities, challenges and the path to market,” IEEE Commun. Mag., vol. 51, no. 12, pp. 26–32, Dec. 2013.
  3. Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1738–1749, Sep. 2015.
  4. J. Shi et al., “3.76-Gbps yellow-light visible light communication system over 1.2 m free space transmission utilizing a Si-substrate LED and a cascaded pre-equalizer network,” Opt. Express, vol. 30, no. 18, pp. 33 337–33 352, Aug. 2022.
  5. Y. Kaymak et al., “A survey on acquisition tracking and pointing mechanisms for mobile free-space optical communications,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1104–1123, 2nd Quart., 2018.
  6. R. Migliore, J. Duncan, V. Pulcino, D. Bourne, S. Voegt, and G. Perez, “Outlook on EDRS-C,” in Proc. Int. Conf. Space Opt. (ICSO), Biarritz, France, Oct. 2016, pp. 105 622S1–105 622S9.
  7. M. Xiong, Q. Liu, G. Wang, G. B. Giannakis, and C. Huang, “Resonant beam communications: Principles and designs,” IEEE Commun. Mag., vol. 57, no. 10, pp. 34–39, Oct. 2019.
  8. M. Xiong, Q. Liu, G. Wang, G. B. Giannakis, S. Zhang, J. Zhu, and C. Huang, “Resonant beam communications with echo interference elimination,” IEEE Internet Things J., vol. 8, no. 4, pp. 2875–2885, Feb. 2021.
  9. G. J. Linford, E. R. Peressini, W. R. Sooy, and M. L. Spaeth, “Very long lasers,” Appl. Opt., vol. 13, no. 2, pp. 379–390, Feb. 1974.
  10. D. Li, Y. Tian, and C. Huang, “Design and performance of resonant beam communications–part I: the quasi-static scenario,” IEEE Tran. Mobile Comput., Under Review.
  11. T. V. Schaijk, D. Lenstra, K. Williams, and E. Bente, “Model and experimental validation of a unidirectional phase modulator,” Opt. Express, vol. 26, no. 25, pp. 32 338–32 403, Dec. 2018.
  12. D. A. Basnayaka and H. Haas, “Hybrid RF and VLC systems: Improving user data rate performance of VLC systems,” in Proc. IEEE Veh. Technol. Conf. (VTC), Glasgow, U.K., May 2015, pp. 1–5.
  13. D. Li, Y. Tian, and C. Huang, “Capacity analysis of mobile resonant beam communications,” in Proc. IEEE Int. Conf. Commun, Montreal, QC, Canada, June 2021, pp. 1–6.
  14. P. F. Bordui and M. M. Fejer, “Inorganic crystals for nonlinear optical frequency conversion,” Annu. Rev. Mater. Sci., vol. 23, no. 1, pp. 321–379, 1993.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com