Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design and Performance of Resonant Beam Communications -- Part I: Quasi-Static Scenario (2403.16676v1)

Published 25 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: This two-part paper studies a point-to-point resonant beam communication (RBCom) system, where two separately deployed retroreflectors are adopted to generate the resonant beam between the transmitter and the receiver, and analyzes the transmission rate of the considered system under both the quasi-static and mobile scenarios. Part I of this paper focuses on the quasi-static scenario where the locations of the transmitter and the receiver are relatively fixed. Specifically, we propose a new information-bearing scheme which adopts a synchronization-based amplitude modulation method to mitigate the echo interference caused by the reflected resonant beam. With this scheme, we show that the quasi-static RBCom channel is equivalent to a Markov channel and can be further simplified as an amplitude-constrained additive white Gaussian noise channel. Moreover, we develop an algorithm that jointly employs the bisection and exhaustive search to maximize its capacity upper and lower bounds. Finally, numerical results validate our analysis. Part II of this paper discusses the performance of the RBCom system under the mobile scenario.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: Potential and state-of-the-art,” IEEE Commun. Mag., vol. 49, no. 9, pp. 56–62, Sep. 2001.
  2. M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions,” IEEE Open J. Commun. Soc., vol. 1, pp. 957–978, Jul. 2020.
  3. D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: State of the art,” IEEE Commun. Surveys Tutor., vol. 17, no. 3, pp. 1649–1678, Mar. 2015.
  4. M. Uysal and H. Nouri, “Optical wireless communications—An emerging technology,” in Proc. 16th ICTON, Jul. 2014, pp. 1–7.
  5. M. Z. Chowdhury, M. Shahjalal, M. K. Hasan, and Y. M. Jang, “The role of optical wireless communication technologies in 5G/6G and IoT solutions: Prospects, directions, and challenges,” Appl. Sci., vol. 9, no. 20, p. 4367, Oct. 2019.
  6. Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, and J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE J. Sel. Areas Commun., vol. 33, no. 9, pp. 1738–1749, Sep. 2015.
  7. P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tutor., vol. 17, no. 4, pp. 2047–2077, Sep. 2015.
  8. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron., vol. 50, no. 1, pp. 100–107, Feb. 2004.
  9. L. P. Klaver, “Design of a network stack for directional visible light communication.” Ph.D. dissertation, Faculty Elect. Eng., Math. Comput. Sci., Delft Univ. Technol., Delft, The Netherlands, 2014.
  10. Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photon. J., vol. 7, no. 6, pp. 1–7, Dec. 2015.
  11. V. W. S. Chan, “Free-space optical communications,” J. Lightwave. Technol., vol. 24, no. 12, pp. 4750–4762, Dec. 2006.
  12. D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Exp., vol. 23, no. 2, pp. 1627–1637, Jan. 2015.
  13. R. Lange and B. Smutny, “Highly-coherent optical terminal design status and outlook,” in 2005 Dig. LEOS Summer Topical Meetings, Jul. 2005, pp. 55–57.
  14. Y. Kaymak, R. Rojas-Cessa, J. Feng, N. Ansari, M. Zhou, and T. Zhang, “A survey on acquisition tracking and pointing mechanisms for mobile free-space optical communications,” IEEE Commun. Surveys Tutor., vol. 20, no. 2, pp. 1104–1123, Feb. 2018.
  15. M. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, “A comparative survey of optical wireless technologies: Architectures and applications,” IEEE Access, vol. 6, pp. 9819–9840, Jan. 2018.
  16. M. Xiong, Q. Liu, G. Wang, G. B. Giannakis, and C. Huang, “Resonant beam communications: principles and designs,” IEEE Commun. Mag., vol. 57, no. 10, pp. 34–39, Oct. 2019.
  17. M. Xiong, Q. Liu, G. Wang, G. B. Giannakis, S. Zhang, J. Zhu, and C. Huang, “Resonant beam communications with echo interference elimination,” IEEE Internet Things J., vol. 8, no. 4, pp. 2875–2885, Sep. 2020.
  18. M. Xiong, M. Liu, Q. Jiang, J. Zhou, Q. Liu, and H. Deng, “Retro-reflective beam communications with spatially separated laser resonator,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 4917–4928, Aug. 2021.
  19. J. He, Z. Tao, X. Yu, G. Wen, and Y. Mu, “Discuss performance of corner-cube prism for modulating retro-reflector terminal in free-space laser communication,” in Proc. Symp. Photon. Optoelectron., May 2012, pp. 1–3.
  20. F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett., vol. 36, no. 17, pp. 3371–3373, Sep. 2011.
  21. D. Li, Y. Tian, and C. Huang, “Design and performance of resonant beam communications—part II: the mobile scenario,” under submission.
  22. T. Van Schaijk, D. Lenstra, K. Williams, and E. Bente, “Model and experimental validation of a unidirectional phase modulator,” Opt. Express, vol. 26, no. 25, pp. 32 388–32 403, Dec. 2018.
  23. C. Damgaard-Carstensen, M. Thomaschewski, and S. I. Bozhevolnyi, “Electro-optic metasurface-based free-space modulators,” Nanoscale, vol. 14, no. 31, pp. 11 407–11 414, Jul. 2022.
  24. G. J. Linford, E. R. Peressini, W. R. Sooy, and M. L. Spaeth, “Very long lasers,” Appl. Opt., vol. 13, no. 2, pp. 379–390, Feb. 1974.
  25. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys., vol. 36, no. 8, pp. 2487–2490, Apr. 1965.
  26. A. Kavcic, “On the capacity of markov sources over noisy channels,” in Proc. IEEE GLOBECOM, Nov. 2001, pp. 2997–3001.
  27. J. G. Smith, “On the information capacity of peak and average power constrained gaussian channels,” Ph.D. dissertation, Dept. Elect. Eng., Univ. California, Berkeley, 1969.
  28. A. Thangaraj, G. Kramer, and G. Böcherer, “Capacity bounds for discrete-time, amplitude-constrained, additive white gaussian noise channels,” IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4172–4182, Apr. 2017.
  29. A. L. McKellips, “Simple tight bounds on capacity for the peak-limited discrete-time channel,” in Proc. IEEE Int. Symp. Inf. Theory, June 2004, p. 348.
  30. D. L. Carroll and J. T. Verdeyen, “Effects of including a diffraction term into Rigrod theory for a continuous-wave laser,” Appl. Opt., vol. 48, no. 31, pp. 6035–6043, Nov. 2009.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com