Linearised Calderón problem: Reconstruction of unbounded perturbations in 3D (2403.16588v1)
Abstract: Recently an algorithm was given in [Garde & Hyv\"onen, SIAM J. Math. Anal., 2024] for exact direct reconstruction of any $L2$ perturbation from linearised data in the two-dimensional linearised Calder\'on problem. It was a simple forward substitution method based on a 2D Zernike basis. We now consider the three-dimensional linearised Calder\'on problem in a ball, and use a 3D Zernike basis to obtain a method for exact direct reconstruction of any $L3$ perturbation from linearised data. The method is likewise a forward substitution, hence making it very efficient to numerically implement. Moreover, the 3D method only makes use of a relatively small subset of boundary measurements for exact reconstruction, compared to a full $L2$ basis of current densities.
- A. Allers and F. Santosa. Stability and resolution analysis of a linearized problem in electrical impedance tomography. Inverse Problems, 7(4):515–533, 1991.
- Harmonic Function Theory. Springer New York, 2001.
- Linearization-based direct reconstruction for EIT using triangular Zernike decompositions. Preprint, arXiv:2403.03320 [math.NA].
- A. P. Calderón. On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics, pages 65–73. Soc. Brasil. Mat., Rio de Janeiro, 1980.
- F. Demengel and G. Demengel. Functional spaces for the theory of elliptic partial differential equations. Universitext. Springer, London; EDP Sciences, Les Ulis, 2012.
- C. Efthimiou and C. Frye. Spherical Harmonics in p𝑝pitalic_p Dimensions. World Scientific, 2014.
- On the linearized local Calderón problem. Math. Res. Lett., 16(6):955–970, 2009.
- The linearized Calderón problem in transversally anisotropic geometries. Int. Math. Res. Not., 2020(22):8729–8765, 2020.
- H. Garde and N. Hyvönen. Series reversion in Calderón’s problem. Math. Comp., 91(336):1925–1953, 2022.
- H. Garde and N. Hyvönen. Linearised Calderón problem: Reconstruction and Lipschitz stability for infinite-dimensional spaces of unbounded perturbations. SIAM J. Math. Anal., 2024. Accepted, arXiv:2204.10164 [math.AP].
- T. Gustafsson and G. D. McBain. scikit-fem: A Python package for finite element assembly. J. Open Source Softw., 5(52):2369, 2020.
- J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications, Vol. 1. Springer–Verlag, New York–Heidelberg, 1972.
- D. W. Lozier B. I. Schneider R. F. Boisvert C. W. Clark B. R. Miller B. V. Saunders H. S. Cohl F. W. J. Olver, A. B. Olde Daalhuis and eds. M. A. McClain. NIST Digital Library of Mathematical Functions. National Institute of Standards and Technology, U.S. Department of Commerce, https://dlmf.nist.gov/. Accessed March 2024.
- R. J. Mathar. Zernike basis to Cartesian transformations. Serb. Astron. J., 179:107–120, 2009.
- J.-C. Pain. Some properties of Wigner 3j3𝑗3j3 italic_j coefficients: non-trivial zeros and connections to hypergeometric functions. Eur. Phys. J. A, 2020. Article no. 296.
- V. Sharafutdinov. Linearized inverse problem for the Dirichlet-to-Neumann map on differential forms. Bull. Sci. Math., 133(4):419–444, 2009.
- J. Sjöstrand and G. Uhlmann. Local analytic regularity in the linearized Calderón problem. Anal. PDE, 9(3):515–544, 2016.
- F. Zernike. Beugungstheorie des schneidenverfahrens und seiner verbesserten form, der phasenkontrastmethode. Physica, 1:689–704, 1934.