Linearization-based direct reconstruction for EIT using triangular Zernike decompositions (2403.03320v1)
Abstract: This work implements and numerically tests the direct reconstruction algorithm introduced in [Garde & Hyv\"onen, SIAM J. Math. Anal., 2024] for two-dimensional linearized electrical impedance tomography. Although the algorithm was originally designed for a linearized setting, we numerically demonstrate its functionality when the input data is the corresponding change in the current-to-voltage boundary operator. Both idealized continuum model and practical complete electrode model measurements are considered in the numerical studies, with the examined domain being either the unit disk or a convex polygon. Special attention is paid to regularizing the algorithm and its connections to the singular value decomposition of a truncated linearized forward map, as well as to the explicit triangular structures originating from the properties of the employed Zernike polynomial basis for the conductivity.
- A. Allers and F. Santosa. Stability and resolution analysis of a linearized problem in electrical impedance tomography. Inverse Problems, 15:515, 1991.
- L. Borcea. Electrical impedance tomography. Inverse problems, 18:R99–R136, 2002.
- A. P. Calderón. On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics, pages 65–73. Soc. Brasil. Mat., Rio de Janeiro, 1980.
- Electrical impedance tomography. SIAM Rev., 41:85–101, 1999.
- Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng., 36:918–924, 1989.
- T. A. Driscoll. Algorithm 756; a MATLAB toolbox for Schwarz–Christoffel mapping. ACM Trans. Math. Soft., 22:168–186, 1996.
- H. Garde. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations. Inverse Probl. Sci. Eng., 26(1):33–50, 2018.
- H. Garde and N. Hyvönen. Mimicking relative continuum measurements by electrode data in two-dimensional electrical impedance tomography. Numer. Math., 147(3):579–609, 2021.
- H. Garde and N. Hyvönen. Series reversion in Calderón’s problem. Math. Comp., 91:1925–1953, 2022.
- H. Garde and N. Hyvönen. Linearised Calderón problem: Reconstruction and Lipschitz stability for infinite-dimensional spaces of unbounded perturbations. SIAM J. Math. Anal., 2024. Accepted, arXiv:2204.10164.
- T. Gustafsson and G. D. McBain. scikit-fem: A Python package for finite element assembly. Journal of Open Source Software, 5(52):2369, 2020.
- B. Harrach and J. K. Seo. Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J. Math. Anal., 42:1505–1518, 2010.
- Open 2D electrical impedance tomography data archive, 2017. arXiv:1704.01178.
- N. J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2002.
- N. Hyvönen and L. Mustonen. Smoothened complete electrode model. SIAM J. Appl. Math., 77:2250–2271, 2017.
- N. Hyvönen and L. Mustonen. Generalized linearization techniques in electrical impedance tomography. Numer. Math., 140:95–120, 2018.
- Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Probl. Imaging, 12:373–400, 2017.
- Ch. Pommerenke. Boundary behaviour of conformal maps. Springer-Verlag, 1992.
- J. Saranen and G. Vainikko. Periodic integral and pseudodifferential equations with numerical approximation. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002.
- Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math., 52:1023–1040, 1992.
- L. N. Trefethen. Numerical computation of the Schwarz–Christoffel transformation. SIAM J. Sci. Stat. Comput., 1:82–102, 1980.
- G. Uhlmann. Electrical impedance tomography and Calderón’s problem. Inverse Problems, 25:123011, 2009.
- M. Vauhkonen. Electrical impedance tomography with prior information, volume 62. Kuopio University Publications C (Dissertation), 1997.
- F. Zernike. Beugungstheorie des schneidenverfahrens und seiner verbesserten form, der phasenkontrastmethode. Physica, 1:689–704, 1934.