Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linearization-based direct reconstruction for EIT using triangular Zernike decompositions (2403.03320v1)

Published 5 Mar 2024 in math.NA and cs.NA

Abstract: This work implements and numerically tests the direct reconstruction algorithm introduced in [Garde & Hyv\"onen, SIAM J. Math. Anal., 2024] for two-dimensional linearized electrical impedance tomography. Although the algorithm was originally designed for a linearized setting, we numerically demonstrate its functionality when the input data is the corresponding change in the current-to-voltage boundary operator. Both idealized continuum model and practical complete electrode model measurements are considered in the numerical studies, with the examined domain being either the unit disk or a convex polygon. Special attention is paid to regularizing the algorithm and its connections to the singular value decomposition of a truncated linearized forward map, as well as to the explicit triangular structures originating from the properties of the employed Zernike polynomial basis for the conductivity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. A. Allers and F. Santosa. Stability and resolution analysis of a linearized problem in electrical impedance tomography. Inverse Problems, 15:515, 1991.
  2. L. Borcea. Electrical impedance tomography. Inverse problems, 18:R99–R136, 2002.
  3. A. P. Calderón. On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics, pages 65–73. Soc. Brasil. Mat., Rio de Janeiro, 1980.
  4. Electrical impedance tomography. SIAM Rev., 41:85–101, 1999.
  5. Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng., 36:918–924, 1989.
  6. T. A. Driscoll. Algorithm 756; a MATLAB toolbox for Schwarz–Christoffel mapping. ACM Trans. Math. Soft., 22:168–186, 1996.
  7. H. Garde. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations. Inverse Probl. Sci. Eng., 26(1):33–50, 2018.
  8. H. Garde and N. Hyvönen. Mimicking relative continuum measurements by electrode data in two-dimensional electrical impedance tomography. Numer. Math., 147(3):579–609, 2021.
  9. H. Garde and N. Hyvönen. Series reversion in Calderón’s problem. Math. Comp., 91:1925–1953, 2022.
  10. H. Garde and N. Hyvönen. Linearised Calderón problem: Reconstruction and Lipschitz stability for infinite-dimensional spaces of unbounded perturbations. SIAM J. Math. Anal., 2024. Accepted, arXiv:2204.10164.
  11. T. Gustafsson and G. D. McBain. scikit-fem: A Python package for finite element assembly. Journal of Open Source Software, 5(52):2369, 2020.
  12. B. Harrach and J. K. Seo. Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J. Math. Anal., 42:1505–1518, 2010.
  13. Open 2D electrical impedance tomography data archive, 2017. arXiv:1704.01178.
  14. N. J. Higham. Accuracy and stability of numerical algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2002.
  15. N. Hyvönen and L. Mustonen. Smoothened complete electrode model. SIAM J. Appl. Math., 77:2250–2271, 2017.
  16. N. Hyvönen and L. Mustonen. Generalized linearization techniques in electrical impedance tomography. Numer. Math., 140:95–120, 2018.
  17. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Probl. Imaging, 12:373–400, 2017.
  18. Ch. Pommerenke. Boundary behaviour of conformal maps. Springer-Verlag, 1992.
  19. J. Saranen and G. Vainikko. Periodic integral and pseudodifferential equations with numerical approximation. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002.
  20. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math., 52:1023–1040, 1992.
  21. L. N. Trefethen. Numerical computation of the Schwarz–Christoffel transformation. SIAM J. Sci. Stat. Comput., 1:82–102, 1980.
  22. G. Uhlmann. Electrical impedance tomography and Calderón’s problem. Inverse Problems, 25:123011, 2009.
  23. M. Vauhkonen. Electrical impedance tomography with prior information, volume 62. Kuopio University Publications C (Dissertation), 1997.
  24. F. Zernike. Beugungstheorie des schneidenverfahrens und seiner verbesserten form, der phasenkontrastmethode. Physica, 1:689–704, 1934.
Citations (2)

Summary

We haven't generated a summary for this paper yet.