Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Certifiable Lower Bounds of Wigner Negativity Volume and Non-Gaussian Entanglement with Conditional Displacement Gates (2403.16441v2)

Published 25 Mar 2024 in quant-ph

Abstract: In circuit and cavity quantum electrodynamics devices where control qubits are dispersively coupled to high-quality-factor cavities, characteristic functions of cavity states can be directly probed with conditional displacement (CD) gates. In this Letter, I propose a method to certify non-Gaussian entanglement between cavities using only CD gates and qubit readouts. The CD witness arises from an application of Bochner's theorem to a surprising connection between two negativities: that of the reduced Wigner function, and that of the partial transpose. Non-Gaussian entanglement of some common states, like entangled cats and photon-subtracted two-mode squeezed vacua, can be detected by measuring as few as four points of the characteristic function. Furthermore, the expectation value of the witness is a simultaneous lower bound to the Wigner negativity volume and a geometric measure of entanglement conjectured to be the partial transpose negativity. Both negativities are strong monotones of non-Gaussianity and entanglement, respectively, so the CD witness provides experimentally accessible lower bounds to quantities related to these monotones without the need for tomography on the cavity states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. S. Haroche, M. Brune, and J. M. Raimond, From cavity to circuit quantum electrodynamics, Nature Physics 16, 243 (2020).
  2. T. D. Farokh Mivehvar, Francesco Piazza and H. Ritsch, Cavity QED with quantum gases: new paradigms in many-body physics, Advances in Physics 70, 1 (2021).
  3. R. Simon, Peres-Horodecki Separability Criterion for Continuous Variable Systems, Phys. Rev. Lett. 84, 2726 (2000).
  4. A. A. Valido, F. Levi, and F. Mintert, Hierarchies of multipartite entanglement for continuous-variable states, Phys. Rev. A 90, 052321 (2014).
  5. R. Takagi and Q. Zhuang, Convex resource theory of non-Gaussianity, Phys. Rev. A 97, 062337 (2018).
  6. M. B. Plenio, Logarithmic Negativity: A Full Entanglement Monotone That is not Convex, Phys. Rev. Lett. 95, 090503 (2005).
  7. U. Chabaud, P.-E. Emeriau, and F. Grosshans, Witnessing Wigner Negativity, Quantum 5, 471 (2021).
  8. L. G. Lutterbach and L. Davidovich, Method for Direct Measurement of the Wigner Function in Cavity QED and Ion Traps, Phys. Rev. Lett. 78, 2547 (1997).
  9. H.-W. Lee, Theory and application of the quantum phase-space distribution functions, Physics Reports 259, 147 (1995).
  10. L. Loomis, An Introduction to Abstract Harmonic Analysis (Van Nostrand, New York, 1953).
  11. R. Werner, Quantum harmonic analysis on phase space, Journal of Mathematical Physics 25, 1404 (1984).
  12. A. Kenfack and K. Życzkowski, Negativity of the Wigner function as an indicator of non-classicality, Journal of Optics B: Quantum and Semiclassical Optics 6, 396 (2004).
  13. P. Jayachandran, L. H. Zaw, and V. Scarani, Dynamics-Based Entanglement Witnesses for Non-Gaussian States of Harmonic Oscillators, Phys. Rev. Lett. 130, 160201 (2023).
  14. L. Chen, M. Aulbach, and M. Hajdušek, Comparison of different definitions of the geometric measure of entanglement, Phys. Rev. A 89, 042305 (2014).
  15. M. Khasin, R. Kosloff, and D. Steinitz, Negativity as a distance from a separable state, Phys. Rev. A 75, 052325 (2007).
  16. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, 1985).
  17. J. R. Magnus, On Differentiating Eigenvalues and Eigenvectors, Econometric Theory 1, 179–191 (1985).
  18. H. Song, G. Zhang, and H. Yonezawa, Strong quantum entanglement based on two-mode photon-subtracted squeezed vacuum states, Phys. Rev. A 108, 052420 (2023).
  19. A. O. Caldeira and A. J. Leggett, Influence of damping on quantum interference: An exactly soluble model, Phys. Rev. A 31, 1059 (1985).
  20. T. Hillmann and F. Quijandría, Quantum error correction with dissipatively stabilized squeezed-cat qubits, Phys. Rev. A 107, 032423 (2023).
  21. J. Eisert, F. G. S. L. Brandão, and K. M. R. Audenaert, Quantitative entanglement witnesses, New Journal of Physics 9, 46 (2007).
  22. L. M. Johansen, EPR correlations and EPW distributions revisited, Physics Letters A 236, 173 (1997).
  23. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
  24. L. Cohen, Wigner Distributions as Representations of the Density Matrix, in Density Matrices and Density Functionals, edited by R. Erdahl and V. H. Smith (Springer Netherlands, Dordrecht, 1987) pp. 305–325.
  25. J. S. Bell, EPR Correlations and EPW Distributions, Annals of the New York Academy of Sciences 480, 263 (1986).
  26. While interpretations of Eq. (30) as a probability can be problematic due to the unnormalizability of the EPR state [46], there are no issues here as the only property needed is its positive semidefiniteness.
  27. R. Hudson, When is the Wigner quasi-probability density non-negative?, Reports on Mathematical Physics 6, 249 (1974).
  28. F. Soto and P. Claverie, When is the Wigner function of multidimensional systems nonnegative?, Journal of Mathematical Physics 24, 97 (1983).
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com