Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RSTAR4D: Rotational Streak Artifact Reduction in 4D CBCT using a Separable 4D CNN (2403.16361v4)

Published 25 Mar 2024 in eess.IV and cs.CV

Abstract: Four-dimensional cone-beam computed tomography (4D CBCT) provides respiration-resolved images and can be used for image-guided radiation therapy. However, the ability to reveal respiratory motion comes at the cost of image artifacts. As raw projection data are sorted into multiple respiratory phases, the cone-beam projections become much sparser and the reconstructed 4D CBCT images will be covered by severe streak artifacts. Although several deep learning-based methods have been proposed to address this issue, most algorithms employ 2D network models as backbones, neglecting the intrinsic structural priors within 4D CBCT images. In this paper, we first explore the origin and appearance of streak artifacts in 4D CBCT images. We find that streak artifacts exhibit a unique rotational motion along with the patient's respiration, distinguishable from diaphragm-driven respiratory motion in the spatiotemporal domain. Therefore, we propose a novel 4D neural network model, RSTAR4D-Net, designed to address Rotational STreak Artifact Reduction by integrating the spatial and temporal information within 4D CBCT images. Specifically, we overcome the computational and training difficulties of a 4D neural network. The specially designed model adopts an efficient implementation of 4D convolutions to reduce computational costs and thus can process the whole 4D image in one pass. Additionally, a Tetris training strategy pertinent to the separable 4D convolutions is proposed to effectively train the model using limited 4D training samples. Extensive experiments substantiate the effectiveness of our proposed method, and the RSTAR4D-Net shows superior performance compared to other methods. The source code and dynamic demos are available at https://github.com/ivy9092111111/RSTAR.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: a cancer journal for clinicians, vol. 71, no. 3, pp. 209–249, 2021.
  2. L. Dietrich, S. Jetter, T. Tücking, S. Nill, and U. Oelfke, “Linac-integrated 4D cone beam CT: first experimental results,” Physics in Medicine & Biology, vol. 51, no. 11, p. 2939, 2006.
  3. T. Li and L. Xing, “Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy,” International Journal of Radiation Oncology* Biology* Physics, vol. 67, no. 4, pp. 1211–1219, 2007.
  4. T. Li, A. Koong, and L. Xing, “Enhanced 4d cone-beam CT with inter-phase motion model,” Medical physics, vol. 34, no. 9, pp. 3688–3695, 2007.
  5. Q. Zhang, Y.-C. Hu, F. Liu, K. Goodman, K. E. Rosenzweig, and G. S. Mageras, “Correction of motion artifacts in cone-beam CT using a patient-specific respiratory motion model,” Medical physics, vol. 37, no. 6Part1, pp. 2901–2909, 2010.
  6. Y. Zhang, F.-F. Yin, W. P. Segars, and L. Ren, “A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections,” Medical physics, vol. 40, no. 12, p. 121701, 2013.
  7. R. Zeng, J. A. Fessler, and J. M. Balter, “Estimating 3-D respiratory motion from orbiting views by tomographic image registration,” IEEE transactions on medical imaging, vol. 26, no. 2, pp. 153–163, 2007.
  8. Z. Qi and G.-H. Chen, “Extraction of tumor motion trajectories using PICCS-4DCBCT: a validation study,” Medical physics, vol. 38, no. 10, pp. 5530–5538, 2011.
  9. H. Gao, J.-F. Cai, Z. Shen, and H. Zhao, “Robust principal component analysis-based four-dimensional computed tomography,” Physics in Medicine & Biology, vol. 56, no. 11, p. 3181, 2011.
  10. J. Wang and X. Gu, “Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT,” Medical physics, vol. 40, no. 10, p. 101912, 2013.
  11. M. Guo, G. Chee, D. O’Connell, S. Dhou, J. Fu, K. Singhrao, D. Ionascu, D. Ruan, P. Lee, D. A. Low et al., “Reconstruction of a high-quality volumetric image and a respiratory motion model from patient CBCT projections,” Medical physics, vol. 46, no. 8, pp. 3627–3639, 2019.
  12. S. Zhi, M. Kachelrieß, and X. Mou, “High-quality initial image-guided 4D CBCT reconstruction,” Medical physics, vol. 47, no. 5, pp. 2099–2115, 2020.
  13. G. Wang, J. C. Ye, and B. De Man, “Deep learning for tomographic image reconstruction,” Nature Machine Intelligence, vol. 2, no. 12, pp. 737–748, 2020.
  14. Y. Zhang, D. Hu, S. Hao, J. Liu, G. Quan, Y. Zhang, X. Ji, and Y. Chen, “DREAM-Net: Deep residual error iterative minimization network for sparse-view CT reconstruction,” IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 1, pp. 480–491, 2022.
  15. H. Wang, Y. Li, N. He, K. Ma, D. Meng, and Y. Zheng, “DICDNet: deep interpretable convolutional dictionary network for metal artifact reduction in CT images,” IEEE Transactions on Medical Imaging, vol. 41, no. 4, pp. 869–880, 2021.
  16. Z. Jiang, Y. Chen, Y. Zhang, Y. Ge, F.-F. Yin, and L. Ren, “Augmentation of CBCT reconstructed from under-sampled projections using deep learning,” IEEE transactions on medical imaging, vol. 38, no. 11, pp. 2705–2715, 2019.
  17. P. Yang, X. Ge, T. Tsui, X. Liang, Y. Xie, Z. Hu, and T. Niu, “Four-dimensional cone beam CT imaging using a single routine scan via deep learning,” IEEE Transactions on Medical Imaging, 2022.
  18. Z. Jiang, Z. Zhang, Y. Chang, Y. Ge, F.-F. Yin, and L. Ren, “Enhancement of 4-D cone-beam computed tomography (4D-CBCT) using a dual-encoder convolutional neural network (decnn),” IEEE transactions on radiation and plasma medical sciences, vol. 6, no. 2, pp. 222–230, 2021.
  19. S. Zhi, M. Kachelrieß, F. Pan, and X. Mou, “Cycn-net: A convolutional neural network specialized for 4D CBCT images refinement,” IEEE Transactions on Medical Imaging, vol. 40, no. 11, pp. 3054–3064, 2021.
  20. D. Hu, Y. Zhang, J. Liu, Y. Zhang, J. L. Coatrieux, and Y. Chen, “PRIOR: Prior-regularized iterative optimization reconstruction for 4D CBCT,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 11, pp. 5551–5562, 2022.
  21. C.-C. Shieh, Y. Gonzalez, B. Li, X. Jia, S. Rit, C. Mory, M. Riblett, G. Hugo, Y. Zhang, Z. Jiang et al., “SPARE: Sparse-view reconstruction challenge for 4D cone-beam CT from a 1-min scan,” Medical physics, vol. 46, no. 9, pp. 3799–3811, 2019.
  22. M. Brehm, P. Paysan, M. Oelhafen, and M. Kachelrieß, “Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT,” Medical physics, vol. 40, no. 10, p. 101913, 2013.
  23. J. Hsieh, “Computed Tomography: principles, design, artifacts, and recent advances,” 2003.
  24. B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in IJCAI’81: 7th international joint conference on Artificial intelligence, vol. 2, 1981, pp. 674–679.
  25. H. Wang and C. Schmid, “Action recognition with improved trajectories,” in Proceedings of the IEEE international conference on computer vision, 2013, pp. 3551–3558.
  26. L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.” Journal of machine learning research, vol. 9, no. 11, 2008.
  27. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  28. D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A closer look at spatiotemporal convolutions for action recognition,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2018, pp. 6450–6459.
  29. Z. Liu, L. Wang, W. Wu, C. Qian, and T. Lu, “Tam: Temporal adaptive module for video recognition,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 13 708–13 718.
  30. S. Balik, E. Weiss, N. Jan, N. Roman, W. C. Sleeman, M. Fatyga, G. E. Christensen, C. Zhang, M. J. Murphy, J. Lu et al., “Evaluation of 4-dimensional computed tomography to 4-dimensional cone-beam computed tomography deformable image registration for lung cancer adaptive radiation therapy,” International Journal of Radiation Oncology Biology Physics, vol. 86, no. 2, pp. 372–379, 2013.
  31. E. Castillo, R. Castillo, J. Martinez, M. Shenoy, and T. Guerrero, “Four-dimensional deformable image registration using trajectory modeling,” Physics in Medicine & Biology, vol. 55, no. 1, p. 305, 2009.
  32. M. Chao, J. Wei, T. Li, Y. Yuan, K. E. Rosenzweig, and Y.-C. Lo, “Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques,” Physics in Medicine & Biology, vol. 61, no. 8, p. 3109, 2016.
  33. Z. Deng, W. Zhang, K. Chen, Y. Zhou, J. Tian, G. Quan, and J. Zhao, “TT U-Net: Temporal transformer U-Net for motion artifact reduction using PAD (Pseudo All-Phase Clinical-Dataset) in cardiac CT,” IEEE Transactions on Medical Imaging, 2023.
  34. J. Feng, R. Feng, Q. Wu, Z. Zhang, Y. Zhang, and H. Wei, “Spatiotemporal implicit neural representation for unsupervised dynamic MRI reconstruction,” arXiv preprint arXiv:2301.00127, 2022.
  35. W. Wu, D. Hu, W. Cong, H. Shan, S. Wang, C. Niu, P. Yan, H. Yu, V. Vardhanabhuti, and G. Wang, “Stabilizing deep tomographic reconstruction: Part A. hybrid framework and experimental results,” Patterns, vol. 3, no. 5, 2022.

Summary

We haven't generated a summary for this paper yet.