Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Artifact Reduction in 3D and 4D Cone-beam Computed Tomography Images with Deep Learning -- A Review (2403.18565v1)

Published 27 Mar 2024 in cs.CV

Abstract: Deep learning based approaches have been used to improve image quality in cone-beam computed tomography (CBCT), a medical imaging technique often used in applications such as image-guided radiation therapy, implant dentistry or orthopaedics. In particular, while deep learning methods have been applied to reduce various types of CBCT image artifacts arising from motion, metal objects, or low-dose acquisition, a comprehensive review summarizing the successes and shortcomings of these approaches, with a primary focus on the type of artifacts rather than the architecture of neural networks, is lacking in the literature. In this review, the data generation and simulation pipelines, and artifact reduction techniques are specifically investigated for each type of artifact. We provide an overview of deep learning techniques that have successfully been shown to reduce artifacts in 3D, as well as in time-resolved (4D) CBCT through the use of projection- and/or volume-domain optimizations, or by introducing neural networks directly within the CBCT reconstruction algorithms. Research gaps are identified to suggest avenues for future exploration. One of the key findings of this work is an observed trend towards the use of generative models including GANs and score-based or diffusion models, accompanied with the need for more diverse and open training datasets and simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (128)
  1. R. Shende, G. Gupta, G. Patel, and S. Kumar, “Commissioning of TrueBeam(TM) Medical Linear Accelerator: Quantitative and Qualitative Dosimetric Analysis and Comparison of Flattening Filter (FF) and Flattening Filter Free (FFF) Beam,” International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, vol. 5, pp. 51–69, 2016.
  2. D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, and A. A. Martinez, “Flat-panel cone-beam computed tomography for image-guided radiation therapy,” International Journal of Radiation Oncology*Biology*Physics, vol. 53, no. 5, pp. 1337–1349, 2002.
  3. P. Paysan, I. Peterlík, T. Roggen, L. Zhu, C. Wessels, J. Schreier, M. Buchacek, and S. Scheib, “Deep Learning Methods for Image Guidance in Radiation Therapy,” in Artificial Neural Networks in Pattern Recognition - 9th IAPR TC3 Workshop, ANNPR 2020, Winterthur, Switzerland, September 2-4, 2020, Proceedings, ser. Lecture Notes in Computer Science, F.-P. Schilling and T. Stadelmann, Eds., vol. 12294.   Springer, 2020, pp. 3–22. [Online]. Available: https://doi.org/10.1007/978-3-030-58309-5_1
  4. M. F. Spadea, M. Maspero, P. Zaffino, and J. Seco, “Deep learning based synthetic-CT generation in radiotherapy and PET: a review,” Medical physics, vol. 48, no. 11, pp. 6537–6566, 2021.
  5. M. Zhang, S. Gu, and Y. Shi, “The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review,” Complex & Intelligent Systems, vol. 8, no. 6, pp. 5545–5561, 2022. [Online]. Available: https://doi.org/10.1007/s40747-022-00724-7
  6. B. Rusanov, G. M. Hassan, M. Reynolds, M. Sabet, J. Kendrick, P. Rowshanfarzad, and M. Ebert, “Deep learning methods for enhancing cone-beam CT image quality toward adaptive radiation therapy: A systematic review,” Medical Physics, vol. 49, no. 9, pp. 6019–6054, 2022.
  7. R. Schulze, U. Heil, D. Groß, D. Bruellmann, E. Dranischnikow, U. Schwanecke, and E. Schoemer, “Artefacts in CBCT: a review,” Dentomaxillofacial Radiology, vol. 40, no. 5, pp. 265–330, 2011.
  8. F. Boas and D. Fleischmann, “CT artifacts: Causes and reduction techniques,” Imaging in Medicine, vol. 4, 2012.
  9. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. Opt. Soc. Am. A, vol. 1, no. 6, pp. 612–619, 1984.
  10. R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography,” Journal of Theoretical Biology, vol. 29, no. 3, pp. 471–481, 1970.
  11. T. Würfl, M. Hoffmann, V. Christlein, K. Breininger, Y. Huang, M. Unberath, and A. K. Maier, “Deep learning computed tomography: Learning projection-domain weights from image domain in limited angle problems,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1454–1463, 2018.
  12. A. Maier, C. Syben, B. Stimpel, T. Würfl, M. Hoffmann, F. Schebesch, W. Fu, L. Mill, L. Kling, and S. Christiansen, “Learning with known operators reduces maximum error bounds,” Nature Machine Intelligence, vol. 1, pp. 373–380, 08 2019.
  13. C. Syben, M. Michen, B. Stimpel, S. Seitz, S. Ploner, and A. K. Maier, “Technical Note: PYRO‐NN: Python reconstruction operators in neural networks,” Medical Physics, vol. 46, no. 11, pp. 5110–5115, Nov. 2019. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899669/
  14. G. Dong, C. Zhang, L. Deng, Y. Zhu, J. Dai, L. Song, R. Meng, T. Niu, X. Liang, and Y. Xie, “A deep unsupervised learning framework for the 4D CBCT artifact correction.” Physics in Medicine and Biology, vol. 67, no. 5, p. 055012, 2022.
  15. Y. Liu, X. Chen, J. Zhu, B. Yang, R. Wei, R. Xiong, H. Quan, Y. Liu, J. Dai, and K. Men, “A two-step method to improve image quality of CBCT with phantom-based supervised and patient-based unsupervised learning strategies,” Physics in medicine and biology, vol. 67, no. 8, 2022.
  16. K. Choi, “A Comparative Study between Image- and Projection-Domain Self-Supervised Learning for Ultra Low-Dose CBCT,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2022, pp. 2076–2079.
  17. Y. Han and H. Yu, “Self-Supervised Noise Reduction in Low-Dose Cone Beam Computed Tomography (CBCT) Using the Randomly Dropped Projection Strategy,” Applied Sciences, vol. 12, no. 3, p. 1714, 2022.
  18. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
  19. L. R. Dice, “Measures of the amount of ecologic association between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.
  20. L. Zhu, Y. Chen, J. Yang, X. Tao, and Y. Xi, “Evaluation of the dental spectral cone beam ct for metal artefact reduction,” Dentomaxillofacial Radiology, vol. 48, no. 2, p. 20180044, 2019.
  21. W. Cao, T. Sun, G. Fardell, B. Price, and W. Dewulf, “Comparative performance assessment of beam hardening correction algorithms applied on simulated data sets,” Journal of Microscopy, vol. 272, no. 3, pp. 229–241, 2018.
  22. H. Sheikh and A. Bovik, “Image information and visual quality,” IEEE Transactions on Image Processing, vol. 15, no. 2, pp. 430–444, 2006.
  23. M. Amirian, J. A. Montoya-Zegarra, I. Herzig, P. Eggenberger Hotz, L. Lichtensteiger, M. Morf, A. Züst, P. Paysan, I. Peterlik, S. Scheib, R. M. Füchslin, T. Stadelmann, and F.-P. Schilling, “Mitigation of motion-induced artifacts in cone beam computed tomography using deep convolutional neural networks,” Medical Physics, vol. 50, pp. 6228–6242, 2023.
  24. S. Kida, T. Nakamoto, M. Nakano, K. Nawa, A. Haga, J. Kotoku, H. Yamashita, and K. Nakagawa, “Cone Beam Computed Tomography Image Quality Improvement Using a Deep Convolutional Neural Network.” Cureus, vol. 10, no. 4, p. e2548, 2018.
  25. S. Majee, T. Balke, C. A. J. Kemp, G. T. Buzzard, and C. A. Bouman, “4D X-Ray CT Reconstruction using Multi-Slice Fusion,” in 2019 IEEE International Conference on Computational Photography (ICCP), 2019, pp. 1–8.
  26. S. Chang, X. Chen, J. Duan, and X. Mou, “A hybrid ring artifact reduction algorithm based on CNN in CT images,” in 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, S. Matej and S. Metzler, Eds., vol. 11072, 2019, p. 1107226.
  27. K. Xiao, Y. Han, Y. Xu, L. Li, X. Xi, H. Bu, and B. Yan, “X-ray cone-beam computed tomography geometric artefact reduction based on a data-driven strategy.” Applied optics, vol. 58, no. 17, pp. 4771–4780, Jun. 2019.
  28. D. Choi, J. Kim, S. Chae, B. Kim, J. Baek, A. Maier, R. Fahrig, H. Park, and J. Choi, “Multidimensional Noise Reduction in C-arm Cone-beam CT via 2D-based Landweber Iteration and 3D-based Deep Neural Networks,” in Medical Imaging 2019: Physics of Medical Imaging, T. Schmidt, G. Chen, and H. Bosmans, Eds., vol. 10948, 2019, p. 1094837.
  29. N. Dahiya, S. R. Alam, P. Zhang, S.-Y. Zhang, T. Li, A. Yezzi, and S. Nadeem, “Multitask 3D CBCT-to-CT translation and organs-at-risk segmentation using physics-based data augmentation.” Medical physics, vol. 48, no. 9, pp. 5130–5141, 2021.
  30. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 2818–2826, 2016.
  31. Z. Fang, B. Ye, B. Yuan, T. Wang, S. Zhong, S. Li, and J. Zheng, “Angle prediction model when the imaging plane is tilted about z-axis,” The Journal of Supercomputing, vol. 78, no. 17, pp. 18 598–18 615, 2022.
  32. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  33. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2242–2251.
  34. D. Clark and C. Badea, “Spectral data completion for dual-source x-ray CT,” in Medical Imaging 2019: Physics of Medical Imaging, T. Schmidt, G. Chen, and H. Bosmans, Eds., vol. 10948, 2019, p. 109481F.
  35. R. Wei, B. Liu, F. Zhou, X. Bai, D. Fu, B. Liang, and Q. Wu, “A patient-independent CT intensity matching method using conditional generative adversarial networks (cGAN) for single x-ray projection-based tumor localization.” Physics in medicine and biology, vol. 65, no. 14, p. 145009, 2020.
  36. A. Santhanam, M. Lauria, B. Stiehl, D. Elliott, S. Seshan, S. Hsieh, M. Cao, and D. Low, “An adversarial machine learning based approach and biomechanically-guided validation for improving deformable image registration accuracy between a planning CT and cone-beam CT for adaptive prostate radiotherapy applications,” in Medical Imaging 2020: Image Processing, I. Isgum and B. Landman, Eds., vol. 11313, 2021, p. 113130P.
  37. M. Chu, Y. Xie, J. Mayer, L. Leal-Taixé, and N. Thuerey, “Learning temporal coherence via self-supervision for GAN-based video generation,” ACM Transactions on Graphics, vol. 39, no. 4, pp. 75:1–75:13, 2020.
  38. Z. Zhang, M. Huang, Z. Jiang, Y. Chang, J. Torok, F.-F. Yin, and L. Ren, “4D radiomics: impact of 4D-CBCT image quality on radiomic analysis.” Physics in Medicine and Biology, vol. 66, no. 4, p. 045023, 2021.
  39. S. Kida, S. Kaji, K. Nawa, T. Imae, T. Nakamoto, S. Ozaki, T. Ohta, Y. Nozawa, and K. Nakagawa, “Visual enhancement of Cone-beam CT by use of CycleGAN.” Medical physics, vol. 47, no. 3, pp. 998–1010, 2020.
  40. K. Usui, K. Ogawa, M. Goto, Y. Sakano, S. Kyougoku, and H. Daida, “A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images,” Radiation Oncology, vol. 17, p. 69, 2022.
  41. T. Hase, M. Nakao, K. Imanishi, M. Nakamura, T. Matsuda, and IEEE, “Improvement of Image Quality of Cone-beam CT Images by Three-dimensional Generative Adversarial Network,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021, pp. 2843–2846.
  42. T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu, “Contrastive learning for unpaired image-to-image translation,” in European conference on computer vision (ECCV), 2020, pp. 319–345.
  43. J. Joseph, P. P. N., and J. P. B., “Supervised Fan Beam Computed Tomography Image Synthesis using 3D CycleGAN,” in 2022 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), vol. 1, 2022, pp. 81–86.
  44. J. Harms, Y. Lei, T. Wang, R. Zhang, J. Zhou, X. Tang, W. J. Curran, T. Liu, and X. Yang, “Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography.” Medical physics, vol. 46, no. 9, pp. 3998–4009, 2019.
  45. C. J. O’Hara, D. Bird, B. Al-Qaisieh, and R. Speight, “Assessment of CBCT-based synthetic CT generation accuracy for adaptive radiotherapy planning.” Journal of applied clinical medical physics, vol. 23, no. 11, p. e13737, 2022.
  46. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds.   Cham: Springer International Publishing, 2015, pp. 234–241.
  47. C. Kurz, M. Maspero, M. H. F. Savenije, G. Landry, F. Kamp, M. Pinto, M. Li, K. Parodi, C. Belka, and C. A. T. van den Berg, “CBCT correction using a cycle-consistent generative adversarial network and unpaired training to enable photon and proton dose calculation,” Physics in medicine and biology, vol. 64, no. 22, p. 225004, 2019.
  48. Y. Han, J. Kim, and J. C. Ye, “Differentiated Backprojection Domain Deep Learning for Conebeam Artifact Removal,” IEEE Transactions on Medical Imaging, vol. 39, no. 11, pp. 3571–3582, 2020.
  49. M. J. Lagerwerf, D. M. Pelt, W. J. Palenstijn, and K. J. Batenburg, “A Computationally Efficient Reconstruction Algorithm for Circular Cone-Beam Computed Tomography Using Shallow Neural Networks.” Journal of imaging, vol. 6, no. 12, p. 135, 2020.
  50. G. Chen, Y. Zhao, Q. Huang, and H. Gao, “4D-AirNet: a temporally-resolved CBCT slice reconstruction method synergizing analytical and iterative method with deep learning,” Physics in Medicine and Biology, vol. 65, no. 17, 2020.
  51. K. Lu, L. Ren, and F.-F. Yin, “A geometry-guided deep learning technique for CBCT reconstruction.” Physics in Medicine and Biology, vol. 66, no. 15, p. 15LT01, 2021.
  52. ——, “A geometry-guided multi-beamlet deep learning technique for CT reconstruction.” Biomedical Physics & Engineering Express, vol. 8, no. 4, p. 045004, 2022.
  53. M. Thies, J.-N. Zäch, C. Gao, R. Taylor, N. Navab, A. Maier, and M. Unberath, “A learning-based method for online adjustment of C-arm Cone-beam CT source trajectories for artifact avoidance,” International journal of computer assisted radiology and surgery, vol. 15, no. 11, pp. 1787–1796, 2020.
  54. A. Kofler, M. Haltmeier, T. Schaeffter, M. Kachelrieß, M. Dewey, C. Wald, and C. Kolbitsch, “Neural networks-based regularization for large-scale medical image reconstruction.” Physics in Medicine and Biology, vol. 65, no. 13, p. 135003, 2020.
  55. T. Kurosawa, T. Nishio, S. Moriya, M. Tsuneda, and K. Karasawa, “Feasibility of image quality improvement for high-speed CBCT imaging using deep convolutional neural network for image-guided radiotherapy in prostate cancer.” Physica Medica, vol. 80, pp. 84–91, 2020.
  56. D. S.-C. Jin, L.-S. Chang, Y.-H. Wang, J.-C. Chen, S. H. Tseng, and T.-Y. Liu, “Virtual and real-world implementation of deep-learning-based image denoising model on projection domain in digital tomosynthesis and cone-beam computed tomography data,” Biomedical physics & engineering express, vol. 8, no. 6, 2022.
  57. K. Choi, “Self-supervised Projection Denoising for Low-Dose Cone-Beam CT,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Nov. 2021, pp. 3459–3462.
  58. D. Choi, W. Kim, J. Lee, M. Han, J. Baek, and J. Choi, “Integration of 2D iteration and a 3D CNN-based model for multi-type artifact suppression in C-arm cone-beam CT,” Machine Vision and Applications, vol. 32, no. 116, 2021.
  59. K. Chen, L. Zhang, J. Liu, Y. Gao, Z. Wu, H. Zhu, C. Du, X. Mai, C. Yang, and Y. Chen, “Robust restoration of low-dose cerebral perfusion CT images using NCS-Unet,” Nuclear Science and Techniques, vol. 33, no. 30, 2022.
  60. Z. Jiang, Y. Chen, Y. Zhang, Y. Ge, F. -F. Yin, and L. Ren, “Augmentation of CBCT Reconstructed From Under-Sampled Projections Using Deep Learning,” IEEE Transactions on Medical Imaging, vol. 38, no. 11, pp. 2705–2715, 2019.
  61. Z. Fu, H. Tseng, S. Vedantham, A. Karellas, and A. Bilgin, “A residual dense network assisted sparse view reconstruction for breast computed tomography,” scientific reports, vol. 10, p. 21111, 2020.
  62. Y. Zhang, L. Chen, B. Li, M. Folkert, X. Jia, X. Gu, and J. Wang, “Incorporating Biomechanical Modeling and Deep Learning into a Deformation-Driven Liver CBCT Reconstruction Technique,” in Medical Imaging 2019: Physics of Medical Imaging, T. Schmidt, G. Chen, and H. Bosmans, Eds., vol. 10948, 2019.
  63. Y. Chen, F.-F. Yin, Z. Jiang, and L. Ren, “Daily edge deformation prediction using an unsupervised convolutional neural network model for low dose prior contour based total variation CBCT reconstruction (PCTV-CNN),” Biomedical Physics & Engineering Express, vol. 5, no. 6, p. 065013, 2019.
  64. Y. Wang, L. Chao, W. Shan, H. Zhang, Z. Wang, and Q. Li, “Improving the quality of sparse-view cone-beam computed tomography via reconstruction-friendly interpolation network,” in Computer Vision – ACCV 2022, L. Wang, J. Gall, T.-J. Chin, I. Sato, and R. Chellappa, Eds.   Cham: Springer Nature Switzerland, 2023, pp. 86–100.
  65. L. Chao, P. Zhang, Y. Wang, Z. Wang, W. Xu, and Q. Li, “Dual-domain attention-guided convolutional neural network for low-dose cone-beam computed tomography reconstruction,” Knowledge-Based Systems, vol. 251, Sep. 2022.
  66. D. Wu, K. Kim, and Q. Li, “Computationally efficient deep neural network for computed tomography image reconstruction,” Medical Physics, vol. 46, no. 11, pp. 4763–4776, 2019.
  67. H. Xie, H. Shan, and G. Wang, “Deep Encoder-Decoder Adversarial Reconstruction (DEAR) Network for 3D CT from Few-View Data,” Bioengineering, vol. 6, no. 4, 2019.
  68. H. Xie, H. Shan, W. Cong, C. Liu, X. Zhang, S. Liu, R. Ning, and G. Wang, “Deep Efficient End-to-End Reconstruction (DEER) Network for Few-View Breast CT Image Reconstruction,” IEEE Access, vol. 8, pp. 196 633–196 646, 2020.
  69. Y. Wang, Z. Zhong, and J. Hua, “DeepOrganNet: On-the-Fly Reconstruction and Visualization of 3D / 4D Lung Models from Single-View Projections by Deep Deformation Network,” IEEE transactions on visualization and computer graphics, vol. 26, no. 1, pp. 960–970, 2020.
  70. Y. Lin, Z. Luo, W. Zhao, and X. Li, “Learning Deep Intensity Field for Extremely Sparse-View CBCT Reconstruction,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2023, ser. Lecture Notes in Computer Science, H. Greenspan, A. Madabhushi, P. Mousavi, S. Salcudean, J. Duncan, T. Syeda-Mahmood, and R. Taylor, Eds.   Cham: Springer Nature Switzerland, 2023, pp. 13–23.
  71. S. Majee, T. Balke, C. A. J. Kemp, G. T. Buzzard, and C. A. Bouman, “Multi-Slice Fusion for Sparse-View and Limited-Angle 4D CT Reconstruction,” IEEE Transactions on Computational Imaging, vol. 7, pp. 448–462, 2021.
  72. Z. Jiang, Z. Zhang, Y. Chang, Y. Ge, F.-F. Yin, and L. Ren, “Prior image-guided cone-beam computed tomography augmentation from under-sampled projections using a convolutional neural network.” Quantitative imaging in medicine and surgery, vol. 11, no. 12, 2021.
  73. C. A. A. Júnior, L. F. A. Pereira, G. D. C. Cavalcanti, and T. I. Ren, “Ensemble of Convolutional Neural Networks for Sparse-View Cone-Beam Computed Tomography,” in 2022 International Joint Conference on Neural Networks (IJCNN), 2022, pp. 1–7.
  74. D. Hu, Y. Zhang, J. Liu, Y. Zhang, J. L. Coatrieux, and Y. Chen, “PRIOR: Prior-Regularized Iterative Optimization Reconstruction For 4D CBCT,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 11, pp. 5551–5562, 2022.
  75. S. Ghosh, P. Ernst, G. Rose, A. Nürnberger, and S. Stober, “Towards Patient Specific Reconstruction Using Perception-Aware CNN and Planning CT as Prior,” in 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1–5.
  76. S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, N. G. Strouthidis et al., “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomedical optics express, vol. 9, no. 7, pp. 3244–3265, 2018.
  77. L. Jiang, X. Wang, H. Jiang, X. Wang, H. Guo, and X. He, “Sparse-View CBCT Reconstruction Using Combined DRUNet and HQS,” in 2022 5th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), 2022, pp. 1051–1054.
  78. Y. Yang, C. Fang, and L. Zhu, “Sparse-view Cone-beam Breast CT Reconstruction via cGAN Constrained by Image Edges,” Zhongguo yi liao qi xie za zhi (Chinese journal of medical instrumentation), vol. 46, no. 2, pp. 119–125, 2022.
  79. D. L. Parker, “Optimal short scan convolution reconstruction for fan beam CT,” Medical Physics, vol. 9, no. 2, pp. 254–257, 1982.
  80. A.-K. Schnurr, K. Chung, T. Russ, L. R. Schad, and F. G. Zöllner, “Simulation-based deep artifact correction with Convolutional Neural Networks for limited angle artifacts.” Zeitschrift für Medizinische Physik, vol. 29, no. 2, pp. 150–161, 2019.
  81. Y. Wang, T. Yang, and W. Huang, “Limited-Angle Computed Tomography Reconstruction using Combined FDK-Based Neural Network and U-Net,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020, pp. 1572–1575.
  82. M. Rossi, G. Belotti, C. Paganelli, A. Pella, A. Barcellini, P. Cerveri, and G. Baroni, “Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep convolutional neural networks and transfer learning.” Medical Physics, vol. 48, no. 11, pp. 7112–7126, 2021.
  83. Y. Zhang, “An unsupervised 2D-3D deformable registration network (2D3D-RegNet) for cone-beam CT estimation.” Physics in Medicine and Biology, vol. 66, no. 7, p. 074001, 2021.
  84. S. Dweek, S. Dhou, and T. Shanableh, “In-Between Projection Interpolation in Cone-Beam CT Imaging using Convolutional Neural Networks,” in Medical Imaging 2022: Physics of Medical Imaging, W. Zhao and L. Yu, Eds., vol. 12031, 2022, p. 1203129.
  85. L. Sun, Z. Jiang, Y. Chang, and L. Ren, “Building a patient-specific model using transfer learning for four-dimensional cone beam computed tomography augmentation,” Quantitative imaging in medicine and surgery, vol. 11, no. 2, pp. 540–555, 2021.
  86. D. C. Hansen, G. Landry, F. Kamp, M. Li, C. Belka, K. Parodi, and C. Kurz, “ScatterNet: A convolutional neural network for cone-beam CT intensity correction.” Medical Physics, vol. 45, no. 11, pp. 4916–4926, 2018.
  87. T. M. Gottschalk, A. Maier, F. Kordon, and B. W. Kreher, “DL-based inpainting for metal artifact reduction for cone beam CT using metal path length information.” Medical Physics, vol. 50, no. 1, pp. 128–141, 2023.
  88. J. Maier, Y. Berker, S. Sawall, and M. Kachelriess, “Deep Scatter Estimation (DSE): Feasibility of Using a Deep Convolutional Neural Network for Real-Time X-Ray Scatter Prediction in Cone-Beam CT,” in Medical Imaging 2018: Physics of Medical Imaging, J. Lo, T. Schmidt, and G. Chen, Eds., vol. 10573, 2018.
  89. J. Maier, E. Eulig, T. Vöth, M. Knaup, J. Kuntz, S. Sawall, and M. Kachelrieß, “Real-time scatter estimation for medical CT using the deep scatter estimation: Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation.” Medical Physics, vol. 46, no. 1, pp. 238–249, 2019.
  90. B. van der Heyden, S. Roden, R. Dok, S. Nuyts, and E. Sterpin, “Virtual monoenergetic micro-CT imaging in mice with artificial intelligence.” Scientific reports, vol. 12, no. 1, p. 2324, 2022.
  91. M. Sun and J. M. Star-Lack, “Improved scatter correction using adaptive scatter kernel superposition,” Physics in Medicine and Biology, vol. 55, no. 22, p. 6695, 2010.
  92. Y. Nomura, Q. Xu, H. Shirato, S. Shimizu, and L. Xing, “Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network,” Medical Physics, vol. 46, no. 7, pp. 3142–3155, 2019.
  93. A. Lalonde, B. Winey, J. Verburg, H. Paganetti, and G. C. Sharp, “Evaluation of CBCT scatter correction using deep convolutional neural networks for head and neck adaptive proton therapy.” Physics in Medicine and Biology, vol. 65, no. 24, p. 245022, 2020.
  94. S. R. Alam, T. Li, P. Zhang, S.-Y. Zhang, and S. Nadeem, “Generalizable cone beam CT esophagus segmentation using physics-based data augmentation.” Physics in medicine and biology, vol. 66, no. 6, p. 065008, 2021.
  95. Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in Proceedings of International Conference on Computer Vision (ICCV), 2015, pp. 3730–3738.
  96. T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for improved quality, stability, and variation,” in International Conference on Learning Representations (ICLR), 2018.
  97. X. Liang, L. Chen, D. Nguyen, Z. Zhou, X. Gu, M. Yang, J. Wang, and S. Jiang, “Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy.” Physics in medicine and biology, vol. 64, no. 12, p. 125002, 2019.
  98. J. Zaech, C. Gao, B. Bier, R. Taylor, A. Maier, N. Navab, and M. Unberath, “Learning to Avoid Poor Images: Towards Task-aware C-arm Cone-beam CT Trajectories,” in Medical Image Computing and Computer Assisted Intervention (MICCAI 2019), D. Shen, T. Liu, T. Peters, L. Staib, C. Essert, S. Zhou, P. Yap, and A. Khan, Eds., vol. 11768, 2019, pp. 11–19.
  99. P. Wu, N. Sheth, A. Sisniega, A. Uneri, R. Han, R. Vijayan, P. Vagdargi, B. Kreher, H. Kunze, G. Kleinszig, S. Vogt, S. Lo, N. Theodore, and J. Siewerdsen, “Method for Metal Artifact Avoidance in C-Arm Cone-Beam CT,” in Medical Imaging 2020: Physics of Medical Imaging, G. Chen and H. Bosmans, Eds., vol. 11312, 2020.
  100. P. Wu, N. Sheth, A. Sisniega, A. Uneri, R. Han, R. Vijayan, P. Vagdargi, B. Kreher, H. Kunze, G. Kleinszig, S. Vogt, S. F. Lo, N. Theodore, and J. H. Siewerdsen, “C-arm orbits for metal artifact avoidance (MAA) in cone-beam CT.” Physics in medicine and biology, vol. 65, no. 16, p. 165012, 2020.
  101. A. Uneri, P. Wu, C. K. Jones, P. Vagdargi, R. Han, P. A. Helm, M. G. Luciano, W. S. Anderson, and J. H. Siewerdsen, “Deformable 3D-2D registration for high-precision guidance and verification of neuroelectrode placement,” Physics in medicine and biology, vol. 66, no. 21, p. 215014, 2021.
  102. X. Wang, W. Jian, B. Zhang, L. Zhu, Q. He, H. Jin, G. Yang, C. Cai, H. Meng, X. Tan, F. Li, and Z. Dai, “Synthetic CT generation from cone-beam CT using deep-learning for breast adaptive radiotherapy,” Journal of Radiation Research and Applied Sciences, vol. 15, no. 1, pp. 275–282, 2022.
  103. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), 2017, pp. 5967–5976.
  104. F. Fan, B. Kreher, H. Keil, A. Maier, and Y. Huang, “Fiducial marker recovery and detection from severely truncated data in navigation-assisted spine surgery.” Medical physics, vol. 49, no. 5, pp. 2914–2930, 2022.
  105. Z. Cao, X. Gao, Y. Chang, G. Liu, and Y. Pei, “A novel approach for eliminating metal artifacts based on MVCBCT and CycleGAN,” Frontiers in Oncology, vol. 12, p. 1024160, 2022.
  106. J. Beaudry, P. Esquinas, and C. Shieh, “Learning from our neighbours: a novel approach on sinogram completion using bin-sharing and deep learning to reconstruct high quality 4DCBCT,” in Medical Imaging 2019: Physics of Medical Imaging, T. Schmidt, G. Chen, and H. Bosmans, Eds., vol. 10948, 2019.
  107. D. Lee, K. Kim, W. Kim, S. Kang, C. Park, H. Cho, Y. Lim, G. Kim, S. Park, H. Lim, H. Lee, D. Jeon, J. Park, C. Seo, and M. Lee, “Four-Dimensional CBCT Reconstruction Based on a Residual Convolutional Neural Network for Improving Image Quality,” Journal of the Korean Physical Society, vol. 75, no. 1, pp. 73–79, 2019.
  108. S. Zhi, J. Duan, J. Cai, and X. Mou, “Artifacts Reduction Method for Phase-resolved Cone-Beam CT (CBCT) Images via a Prior-Guided CNN,” in Medical Imaging 2019: Physics of Medical Imaging, T. Schmidt, G. Chen, and H. Bosmans, Eds., vol. 10948, 2019.
  109. F. Madesta, T. Sentker, T. Gauer, and R. Werner, “Self-contained deep learning-based boosting of 4D cone-beam CT reconstruction,” Medical physics, vol. 47, no. 11, pp. 5619–5631, 2020.
  110. S. Zhi, M. Kachelrieß, F. Pan, and X. Mou, “CycN-Net: A Convolutional Neural Network Specialized for 4D CBCT Images Refinement,” IEEE Transactions on Medical Imaging, vol. 40, no. 11, pp. 3054–3064, 2021.
  111. S. Zhi and X. Mou, “tN-net: A Spatiotemporal plus Prior Image-based Convolutional Neural Network for 4D-CBCT Reconstructions Enhancement,” in Medical Imaging 2021: Physics of Medical Imaging, H. Bosmans, W. Zhao, and L. Yu, Eds., vol. 11595, 2021.
  112. Z. Zhang, M. Huang, Z. Jiang, Y. Chang, K. Lu, F.-F. Yin, P. Tran, D. Wu, C. Beltran, and L. Ren, “Patient-specific deep learning model to enhance 4D-CBCT image for radiomics analysis.” Physics in medicine and biology, vol. 67, no. 8, p. 085003, 2022.
  113. Z. Zhang, J. Liu, D. Yang, U. S. Kamilov, and G. D. Hugo, “Deep learning-based motion compensation for four-dimensional cone-beam computed tomography (4D-CBCT) reconstruction.” Medical physics, vol. 50, no. 2, pp. 808–820, 2023.
  114. F. Madesta, T. Gauer, T. Sentker, and R. Werner, “Self-consistent deep learning-based boosting of 4D cone-beam computed tomography reconstruction,” in Medical Imaging 2019: Image Processing, E. Angelini and B. Landman, Eds., vol. 10949, 2019.
  115. A. Thummerer, C. Seller Oria, P. Zaffino, S. Visser, A. Meijers, G. Guterres Marmitt, R. Wijsman, J. Seco, J. A. Langendijk, A. C. Knopf, M. F. Spadea, and S. Both, “Deep learning-based 4D-synthetic CTs from sparse-view CBCTs for dose calculations in adaptive proton therapy.” Medical physics, vol. 49, no. 11, pp. 6824–6839, 2022.
  116. C. Shieh, X. Jia, B. Li, Y. Gonzalez, S. Rit, and P. Keall, “AAPM grand challenge: SPARE—sparse-view reconstruction challenge for 4D cone-beam CT,” in American Association of Physicists in Medicine Annual Meeting 2018, 2018. [Online]. Available: http://amos3.aapm.org/abstracts/pdf/137-41908-452581-138082-560681006.pdf
  117. C.-C. Shieh, Y. Gonzalez, B. Li, X. Jia, S. Rit, C. Mory, M. Riblett, G. Hugo, Y. Zhang, Z. Jiang et al., “SPARE: Sparse-view reconstruction challenge for 4D cone-beam CT from a 1-min scan,” Medical physics, vol. 46, no. 9, pp. 3799–3811, 2019.
  118. Z. Jiang, Z. Zhang, Y. Chang, Y. Ge, F. -F. Yin, and L. Ren, “Enhancement of 4-D Cone-Beam Computed Tomography (4D-CBCT) Using a Dual-Encoder Convolutional Neural Network (DeCNN),” IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 6, no. 2, pp. 222–230, 2022.
  119. J. Liu, Y. Kang, D. Hu, and Y. Chen, “4D-CBCT Reconstruction via Motion Compensataion Learning Induced Sparse Tensor Constraint,” in 12th Intl. Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2019, pp. 1–5.
  120. Y. Zhang, X. Huang, and J. Wang, “Advanced 4-dimensional cone-beam computed tomography reconstruction by combining motion estimation, motion-compensated reconstruction, biomechanical modeling and deep learning.” Visual computing for industry, biomedicine, and art, vol. 2, no. 1, p. 23, 2019.
  121. X. Huang, Y. Zhang, L. Chen, and J. Wang, “U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction.” Medical physics, vol. 47, no. 7, pp. 3000–3012, 2020.
  122. A. Sisniega, S. Capostagno, W. Zbijewski, J. Stayman, C. Weiss, T. Ehtiati, and J. Siewerdsen, “Estimation of Local Deformable Motion in Image-Based Motion Compensation for Interventional Cone-Beam CT,” in Medical Imaging 2020: Physics of Medical Imaging, G. Chen and H. Bosmans, Eds., vol. 11312, 2020.
  123. A. Sisniega, H. Huang, W. Zbijewski, J. Stayman, C. Weiss, T. Ehtiati, and J. Siewerdsen, “Deformable Image-Based Motion Compensation for Interventional Cone-Beam CT with a Learned Autofocus Metric,” in Medical Imaging 2021: Physics of Medical Imaging, H. Bosmans, W. Zhao, and L. Yu, Eds., vol. 11595, 2021.
  124. H. Huang, J. H. Siewerdsen, W. Zbijewski, C. R. Weiss, M. Unberath, and A. Sisniega, “Context-aware, reference-free local motion metric for cbct deformable motion compensation,” in 7th International Conference on Image Formation in X-Ray Computed Tomography, J. W. Stayman, Ed., vol. 12304, 2022.
  125. Z. Jiang, Y. Chang, Z. Zhang, F.-F. Yin, and L. Ren, “Fast four-dimensional cone-beam computed tomography reconstruction using deformable convolutional networks.” Medical physics, vol. 49, no. 10, pp. 6461–6476, 2022.
  126. I. Herzig, P. Paysan, S. Scheib, A. Züst, F.-P. Schilling, J. Montoya, M. Amirian, T. Stadelmann, P. Eggenberger Hotz, R. M. Füchslin et al., “Deep learning-based simultaneous multi-phase deformable image registration of sparse 4D-CBCT,” Medical Physics, vol. 49, no. 6, pp. e325–e326, 2022.
  127. A. Hansch, V. Dicken, J. Klein, T. Morgasb, B. Haas, and H. Hahn, “Artifact-driven sampling schemes for robust female pelvis CBCT segmentation using deep learning,” in Medical Imaging 2019: Computer-Aided Diagnosis, K. Mori and H. Hahn, Eds., vol. 10950, 2019.
  128. W. Xia, C. Niu, W. Cong, and G. Wang, “Sub-volume-based denoising diffusion probabilistic model for cone-beam ct reconstruction from incomplete data,” Computing Research Repository (CoRR), vol. abs/2303.12861, 2023. [Online]. Available: {}{}}{https://arxiv.org/abs/2303.12861}{cmtt}
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Mohammadreza Amirian (8 papers)
  2. Daniel Barco (1 paper)
  3. Ivo Herzig (2 papers)
  4. Frank-Peter Schilling (3 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.