Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Percentile Optimization in Wireless Networks- Part II: Beamforming for Cell-Edge Throughput Maximization (2403.16343v1)

Published 25 Mar 2024 in cs.IT and math.IT

Abstract: Part I of this two-part paper focused on the formulation of percentile problems, complexity analysis, and development of power control algorithms via the quadratic fractional transform (QFT) and logarithmic fractional transform (LFT) for sum-least-qth-percentile (SLqP) rate maximization problems. In this second part, we first tackle the significantly more challenging problems of optimizing SLqP rate via beamforming in a multiuser, multiple-input multiple-output (MU- MIMO) network to maximize cell-edge throughput. To this end, we first propose an adaptation of the QFT algorithm presented in Part I that enables optimization of the complex-valued multidimensional beamforming weights for the SLqP rate utility function. We also introduce a new class of problems which we term as sum-greatest-qth-percentile weighted mean squared error (SGqP-WMSE) minimization. We show that this class subsumes the well-known sum-weighted mean squared error (WMMSE) minimization and max-WMSE minimization problems. We demonstrate an equivalence between this class of problems and the SLqP rate maximization problems, and show that this correspondence can be exploited to obtain stationary-point solutions for the aforementioned beamforming problem. Next, we develop extensions for the QFT and LFT algorithms from Part I to optimize ergodic long-term average or ergodic SLqP utility. Finally, we also consider related problems which can be solved using the proposed techniques, including hybrid utility functions targeting optimization at specific subsets of users within cellular networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. B. Soret, A. D. Domenico, S. Bazzi, N. H. Mahmood, and K. I. Pedersen, “Interference Coordination for 5G New Radio,” IEEE Wireless Commun., vol. 25, no. 3, pp. 131–137, Jun. 2018.
  2. 3GPP Technical Report 38.913, “Study on Scenarios and Requirements for Next Generation Access Technologies,” Jul. 2020.
  3. V. Ziegler and S. Yrjola, “6G Indicators of Value and Performance,” in 2020 2nd 6G Wireless Summit (6G SUMMIT).   Levi, Finland: IEEE, Mar. 2020, pp. 1–5.
  4. A. A. Khan, R. Adve, and W. Yu, “Optimizing Downlink Resource Allocation in Multiuser MIMO Networks via Fractional Programming and the Hungarian Algorithm,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5162–5175, Aug. 2020, arXiv: 2006.12549.
  5. K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2631–2644, May 2018.
  6. K. Hosseini, C. Zhu, A. A. Khan, R. S. Adve, and W. Yu, “Optimizing the MIMO Cellular Downlink: Multiplexing, Diversity, or Interference Nulling?” IEEE Trans. Commun., vol. 66, no. 12, pp. 6068–6080, Dec. 2018.
  7. G. Yenihayat and E. Karaşan, “Downlink data rate, energy and spectral efficiency distribution in heterogeneous networks with cell-edge located small cells,” Wireless Netw., vol. 26, no. 4, pp. 2595–2608, May 2020.
  8. J. Garcia-Morales, G. Femenias, and F. Riera-Palou, “Statistical Analysis and Optimization of a Fifth-Percentile User Rate Constrained Design for FFR/SFR-Aided OFDMA-Based Cellular Networks,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3406–3419, Apr. 2018.
  9. T. N. Do, D. B. da Costa, T. Q. Duong, and B. An, “Improving the Performance of Cell-Edge Users in MISO-NOMA Systems Using TAS and SWIPT-Based Cooperative Transmissions,” IEEE Trans. on Green Commun. Netw., vol. 2, no. 1, pp. 49–62, Mar. 2018.
  10. H. H. Yang, G. Geraci, T. Q. S. Quek, and J. G. Andrews, “Cell-Edge-Aware Precoding for Downlink Massive MIMO Cellular Networks,” IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3344–3358, Jul. 2017.
  11. J. Zhang, J. Zhang, D. W. K. Ng, S. Jin, and B. Ai, “Improving sum-rate of cell-free massive MIMO with expanded compute-and-forward,” IEEE Trans. Signal Process., vol. 70, pp. 202–215, 2021.
  12. J. Ma, S. Zhang, H. Li, N. Zhao, and V. C. M. Leung, “Interference-Alignment and Soft-Space-Reuse Based Cooperative Transmission for Multi-cell Massive MIMO Networks,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1907–1922, Mar. 2018.
  13. J. V. C. Evangelista, Z. Sattar, G. Kaddoum, and A. Chaaban, “Fairness and Sum-Rate Maximization via Joint Subcarrier and Power Allocation in Uplink SCMA Transmission,” IEEE Trans. Wireless Commun., vol. 18, no. 12, pp. 5855–5867, Dec. 2019.
  14. P. D. Mankar, G. Das, and S. S. Pathak, “Load-Aware Performance Analysis of Cell Center/Edge Users in Random HetNets,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2476–2490, Mar. 2018.
  15. C. Zhu and W. Yu, “Stochastic Modeling and Analysis of User-Centric Network MIMO Systems,” IEEE Trans. Commun., vol. 66, no. 12, pp. 6176–6189, Dec. 2018.
  16. N. T. Nguyen and K. Lee, “Coverage and Cell-Edge Sum-Rate Analysis of mmWave Massive MIMO Systems With ORP Schemes and MMSE Receivers,” IEEE Trans. Signal Process., vol. 66, no. 20, pp. 5349–5363, Oct. 2018.
  17. Y. Li, M. Jiang, Q. Zhang, and J. Qin, “Joint Beamforming Design in Multi-Cluster MISO NOMA Reconfigurable Intelligent Surface-Aided Downlink Communication Networks,” IEEE Trans. Commun., vol. 69, no. 1, pp. 664–674, Jan. 2021.
  18. M. Rahman and H. Yanikomeroglu, “Enhancing cell-edge performance: a downlink dynamic interference avoidance scheme with inter-cell coordination,” IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1414–1425, Apr. 2010, number: 4.
  19. M. Razaviyayn, M. Hong, and Z.-Q. Luo, “Linear Transceiver Design for a MIMO Interfering Broadcast Channel Achieving Max–Min Fairness,” Signal Process., vol. 93, no. 12, pp. 3327–3340, 2013.
  20. Zhi-Quan Luo and Shuzhong Zhang, “Dynamic Spectrum Management: Complexity and Duality,” IEEE J. Sel. Top. Signal Process., vol. 2, no. 1, pp. 57–73, Feb. 2008.
  21. G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and Distributed Methods for Constrained Nonconvex Optimization—Part I: Theory,” IEEE Trans. Signal Process., vol. 65, no. 8, pp. 1929–1944, Apr. 2017.
  22. G. Scutari, F. Facchinei, L. Lampariello, S. Sardellitti, and P. Song, “Parallel and Distributed Methods for Constrained Nonconvex Optimization-Part II: Applications in Communications and Machine Learning,” IEEE Trans. Signal Process., vol. 65, no. 8, pp. 1945–1960, Apr. 2017.
  23. W. Yu, T. Kwon, and C. Shin, “Adaptive resource allocation in cooperative cellular networks,” in Cooperative Cellular Wireless Networks, E. Hossain, D. I. Kim, and V. K. Bhargava, Eds.   Cambridge: Cambridge University Press, 2011, pp. 233–258.
  24. Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An Iteratively Weighted MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Interfering Broadcast Channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sep. 2011.
  25. M. M. Naghsh, M. Masjedi, A. Adibi, and P. Stoica, “Max–Min Fairness Design for MIMO Interference Channels: A Minorization–Maximization Approach,” IEEE Trans. Signal Process., vol. 67, no. 18, pp. 4707–4719, Sep. 2019.
  26. N. Naderializadeh, J. J. Sydir, M. Simsek, and H. Nikopour, “Resource Management in Wireless Networks via Multi-Agent Deep Reinforcement Learning,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3507–3523, Jun. 2021.
  27. H. P. Benson, “On the Global Optimization of Sums of Linear Fractional Functions Over a Convex Set,” J. Optim. Theory Appl., vol. 121, no. 1, pp. 19–39.
  28. K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part I: Power Control and Beamforming,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2616–2630, May 2018.
  29. S. S. Christensen, R. Agarwal, E. De Carvalho, and J. M. Cioffi, “Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 4792–4799, 2008.
  30. V.-D. Nguyen, C. T. Nguyen, H. V. Nguyen, and O.-S. Shin, “Joint beamforming and antenna selection for sum rate maximization in cognitive radio networks,” IEEE Commun. Letters, vol. 21, no. 6, pp. 1369–1372, 2017.
  31. Y. S. Nasir and D. Guo, “Multi-Agent Deep Reinforcement Learning for Dynamic Power Allocation in Wireless Networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 10, pp. 2239–2250, Oct. 2019.
  32. E. Karipidis, N. D. Sidiropoulos, and Z.-Q. Luo, “Quality of service and max-min fair transmit beamforming to multiple cochannel multicast groups,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1268–1279, 2008.
  33. D. Palomar and Mung Chiang, “A Tutorial on Decomposition Methods for Network Utility Maximization,” IEEE J. Select. Areas Commun., vol. 24, no. 8, pp. 1439–1451, Aug. 2006.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com