Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Percentile Optimization in Wireless Networks- Part I: Power Control for Max-Min-Rate to Sum-Rate Maximization (and Everything in Between) (2403.16344v1)

Published 25 Mar 2024 in cs.IT and math.IT

Abstract: Improving throughput for cell-edge users through coordinated resource allocation has been a long-standing driver of research in wireless cellular networks. While a variety of wireless resource management problems focus on sum utility, max-min utility and proportional fair utility, these formulations do not explicitly cater to cell-edge users and can, in fact, be disadvantageous to them. In this two-part paper series, we introduce a new class of optimization problems called percentile programs, which allow us to explicitly formulate problems that target lower-percentile throughput optimization for cell-edge users. Part I focuses on the class of least-percentile throughput maximization through power control. This class subsumes the well-known max-min and max-sum-rate optimization problems as special cases. Apart from these two extremes, we show that least-percentile rate programs are non-convex, non-smooth and strongly NP-hard in general for multiuser interference networks, making optimization extremely challenging. We propose cyclic maximization algorithms that transform the original problems into equivalent block-concave forms, thereby enabling guaranteed convergence to stationary points. Comparisons with state-of-the-art optimization algorithms such as successive convex approximation and sequential quadratic programming reveal that our proposed algorithms achieve superior performance while computing solutions orders of magnitude faster.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. E. Björnson, “Optimal Resource Allocation in Coordinated Multi-Cell Systems,” Found. Trends Commun. Inf. Theory, vol. 9, no. 2-3, pp. 113–381, 2013.
  2. D. Gesbert, S. G. Kiani, A. Gjendemsjo, and G. E. Oien, “Adaptation, Coordination, and Distributed Resource Allocation in Interference-Limited Wireless Networks,” Proc. IEEE, vol. 95, no. 12, pp. 2393–2409, Dec. 2007.
  3. B. Soret, A. D. Domenico, S. Bazzi, N. H. Mahmood, and K. I. Pedersen, “Interference Coordination for 5G New Radio,” IEEE Wireless Commun., vol. 25, no. 3, pp. 131–137, Jun. 2018.
  4. J. Ma, S. Zhang, H. Li, N. Zhao, and V. C. M. Leung, “Interference-Alignment and Soft-Space-Reuse Based Cooperative Transmission for Multi-cell Massive MIMO Networks,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1907–1922, Mar. 2018.
  5. H. Zhang, L. Venturino, N. Prasad, P. Li, S. Rangarajan, and X. Wang, “Weighted Sum-Rate Maximization in Multi-Cell Networks via Coordinated Scheduling and Discrete Power Control,” IEEE J. Select. Areas Commun., vol. 29, no. 6, pp. 1214–1224, Jun. 2011.
  6. H. H. Yang, G. Geraci, T. Q. S. Quek, and J. G. Andrews, “Cell-Edge-Aware Precoding for Downlink Massive MIMO Cellular Networks,” IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3344–3358, Jul. 2017.
  7. 3GPP Technical Report 38.913 V17.0.0, “Study on Scenarios and Requirements for Next Generation Access Technologies,” Mar. 2022.
  8. 5G Public Private Partnership, “Whitepaper: Beyond 5g/6g kpis and target values,” Jun. 2022.
  9. ITU-R, “Minimum requirements related to technical performance for IMT-2020 radio interface(s),” Nov. 2017.
  10. V. Ziegler and S. Yrjola, “6G Indicators of Value and Performance,” in 2020 2nd 6G Wireless Summit (6G SUMMIT).   Levi, Finland: IEEE, Mar. 2020, pp. 1–5.
  11. B. Sihlbom, M. I. Poulakis, and M. D. Renzo, “Reconfigurable Intelligent Surfaces: Performance Assessment Through a System-Level Simulator,” IEEE Wireless Communications, pp. 1–10, 2022.
  12. H.-B. Chang and I. Rubin, “Optimal Downlink and Uplink Fractional Frequency Reuse in Cellular Wireless Networks,” IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2295–2308, Apr. 2016.
  13. P. D. Mankar, G. Das, and S. S. Pathak, “Load-Aware Performance Analysis of Cell Center/Edge Users in Random HetNets,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2476–2490, Mar. 2018.
  14. D. Lopez-Perez, M. Ding, H. Claussen, and A. H. Jafari, “Towards 1 Gbps/UE in Cellular Systems: Understanding Ultra-Dense Small Cell Deployments,” IEEE Commun. Surv. Tutorials, vol. 17, no. 4, pp. 2078–2101, 2015.
  15. K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2631–2644, May 2018.
  16. A. A. Khan, R. Adve, and W. Yu, “Optimizing Downlink Resource Allocation in Multiuser MIMO Networks via Fractional Programming and the Hungarian Algorithm,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5162–5175, Aug. 2020, arXiv: 2006.12549.
  17. N. Naderializadeh, J. J. Sydir, M. Simsek, and H. Nikopour, “Resource Management in Wireless Networks via Multi-Agent Deep Reinforcement Learning,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3507–3523.
  18. Zhi-Quan Luo and Shuzhong Zhang, “Dynamic Spectrum Management: Complexity and Duality,” IEEE J. Sel. Top. Signal Process., vol. 2, no. 1, pp. 57–73, Feb. 2008.
  19. J. V. C. Evangelista, Z. Sattar, G. Kaddoum, and A. Chaaban, “Fairness and Sum-Rate Maximization via Joint Subcarrier and Power Allocation in Uplink SCMA Transmission,” IEEE Trans. Wireless Commun., vol. 18, no. 12, pp. 5855–5867, Dec. 2019.
  20. M. Razaviyayn, M. Hong, and Z.-Q. Luo, “Linear Transceiver Design for a MIMO Interfering Broadcast Channel Achieving Max–Min Fairness,” Signal Process., vol. 93, no. 12, pp. 3327–3340, 2013.
  21. M. M. Naghsh, M. Masjedi, A. Adibi, and P. Stoica, “Max–Min Fairness Design for MIMO Interference Channels: A Minorization–Maximization Approach,” IEEE Trans. Signal Process., vol. 67, no. 18, pp. 4707–4719, Sep. 2019.
  22. Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An Iteratively Weighted MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Interfering Broadcast Channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sep. 2011.
  23. K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part I: Power Control and Beamforming,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2616–2630, May 2018.
  24. A. A. Khan, R. Adve, and W. Yu, “Optimizing Multicell Scheduling and Beamforming via Fractional Programming and Hungarian Algorithm,” in IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, Dec. 2018, pp. 1–6.
  25. M. Rahman, H. Yanikomeroglu, and W. Wong, “Interference Avoidance with Dynamic Inter-Cell Coordination for Downlink LTE System,” in IEEE Wireless Commun. Netw. Conf. (WCNC), Budapest, Hungary, Apr. 2009, pp. 1–6.
  26. A. Ghazanfari, H. V. Cheng, E. Bjornson, and E. G. Larsson, “Enhanced Fairness and Scalability of Power Control Schemes in Multi-Cell Massive MIMO,” IEEE Trans. Commun., vol. 68, no. 5, pp. 2878–2890.
  27. C. Guo, Y. Zhang, M. Sheng, X. Wang, and Y. Li, “α𝛼\alphaitalic_α-Fair Power Allocation in Spectrum-Sharing Networks,” IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 3771–3777, May 2016.
  28. A. B. Sediq, R. H. Gohary, R. Schoenen, and H. Yanikomeroglu, “Optimal Tradeoff Between Sum-Rate Efficiency and Jain’s Fairness Index in Resource Allocation,” IEEE Trans. Wireless Commun., vol. 12, no. 7, pp. 3496–3509, Jul. 2013.
  29. T. Lan, D. Kao, M. Chiang, and A. Sabharwal, “An Axiomatic Theory of Fairness in Network Resource Allocation,” in Proc. IEEE INFOCOM, San Diego, CA, USA, Mar. 2010, pp. 1–9.
  30. M. Eisen, C. Zhang, L. F. O. Chamon, D. D. Lee, and A. Ribeiro, “Learning Optimal Resource Allocations in Wireless Systems,” IEEE Trans. Signal Process., vol. 67, no. 10, pp. 2775–2790, May 2019.
  31. Y. Li, S. Han, and C. Yang, “Multicell Power Control Under Rate Constraints With Deep Learning,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7813–7825, Dec. 2021.
  32. K. Hosseini, C. Zhu, A. A. Khan, R. S. Adve, and W. Yu, “Optimizing the MIMO Cellular Downlink: Multiplexing, Diversity, or Interference Nulling?” IEEE Trans. Commun., vol. 66, no. 12, pp. 6068–6080, Dec. 2018.
  33. M. J. Todd, “On max-k-sums,” Math. Program., vol. 171, no. 1, pp. 489–517, Sep. 2018.
  34. Y. Nesterov, “Subgradient methods for huge-scale optimization problems,” Math. Program., vol. 146, no. 1-2, pp. 275–297, Aug. 2014.
  35. “CVX Reference Guide.” [Online]. Available: http://cvxr.com/cvx/doc/funcref.html
  36. J. V. Burke, A. S. Lewis, and M. L. Overton, “A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization,” SIAM J. Optim., vol. 15, no. 3, pp. 751–779, Jan. 2005.
  37. G. Scutari, F. Facchinei, L. Lampariello, S. Sardellitti, and P. Song, “Parallel and Distributed Methods for Constrained Nonconvex Optimization-Part II: Applications in Communications and Machine Learning,” IEEE Trans. Signal Process., vol. 65, no. 8, pp. 1945–1960, Apr. 2017.
  38. H. P. Benson, “On the Global Optimization of Sums of Linear Fractional Functions Over a Convex Set,” J. Optim. Theory Appl., vol. 121, no. 1, pp. 19–39.
  39. Z. Wei, D. W. K. Ng, and J. Yuan, “NOMA for Hybrid mmWave Communication Systems With Beamwidth Control,” IEEE J. Sel. Top. Signal Process., vol. 13, no. 3, pp. 567–583.
  40. C. Shen, T.-H. Chang, J. Gong, Y. Zeng, and R. Zhang, “Multi-UAV Interference Coordination via Joint Trajectory and Power Control,” IEEE Trans. Signal Process., vol. 68, pp. 843–858, 2020.
  41. M. S. Ibrahim, A. Konar, and N. D. Sidiropoulos, “Fast Algorithms for Joint Multicast Beamforming and Antenna Selection in Massive MIMO,” IEEE Trans. Signal Process., vol. 68, pp. 1897–1909, 2020.
  42. M. Dong and Q. Wang, “Multi-Group Multicast Beamforming: Optimal Structure and Efficient Algorithms,” IEEE Trans. Signal Process., vol. 68, pp. 3738–3753, 2020.
  43. G. Scutari, F. Facchinei, and L. Lampariello, “Parallel and Distributed Methods for Constrained Nonconvex Optimization—Part I: Theory,” IEEE Trans. Signal Process., vol. 65, no. 8, pp. 1929–1944, Apr. 2017, number: 8.
  44. Y. Sun, P. Babu, and D. P. Palomar, “Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.
  45. M. W. Jacobson and J. A. Fessler, “An Expanded Theoretical Treatment of Iteration-Dependent Majorize-Minimize Algorithms,” IEEE Trans. Image Process., vol. 16, no. 10, pp. 2411–2422, 2007.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com