CodingTeachLLM: Empowering LLM's Coding Ability via AST Prior Knowledge (2403.15426v2)
Abstract: In this paper, we introduce CodingTeachLLM, a LLM designed for coding teaching. Specially, we aim to enhance the coding ability of LLM and lead it to better teaching mode in education context. Thus, we propose an end-to-end prior-based three-phases supervised fine-tuned model, which is proved more competitive than traditional fine-tuning method. More specifically, our model realizes the structural disassembly and incremental guided output of educational knowledge. To this end, we robustify data classification of three types via a sampler and overlap estimation neural network, and inject the preprocessing datasets into pre-trained model in three batches for LORA fine-tuning. Then, we design a prior module couples system prompt, vector databases, and abstract syntax tree task segmentation. Finally, the compression method and regularization constraint are applied to the prior-based fine-tuned model, followed by text filter at the output end to obtain incremental guided results. Our model represents the first research effort to truly embody the tutor role with the features of abundant educational knowledge, step-by-step incremental guided outputs and non-disclosure of answers. Extensive experiments report that our model also achieves state-of-the-art in code abilities compared to open-source models, reaching an impressive 75.10% on the HumanEval (@pass 1) benchmark. Additionally, our model maintains strong conversational capabilities, with the 13B quantized version achieving scores of 56.34, 50.60, and 45.27 respectively on the MMLU, C-Eval, and AGIEval (5 shot) dialogue evaluation benchmarks.
- Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic language model,” Advances in neural information processing systems, vol. 13, 2000.
- T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur, “Recurrent neural network based language model.” in Interspeech, vol. 2, no. 3. Makuhari, 2010, pp. 1045–1048.
- M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for language modeling,” in Thirteenth annual conference of the international speech communication association, 2012.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
- A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018.
- J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
- A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.
- T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
- L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language models to follow instructions with human feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.
- R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto, “Alpaca: A strong, replicable instruction-following model,” Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca. html, vol. 3, no. 6, p. 7, 2023.
- W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez et al., “Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality,” See https://vicuna. lmsys. org (accessed 14 April 2023), 2023.
- H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971, 2023.
- X. Geng, A. Gudibande, H. Liu, E. Wallace, P. Abbeel, S. Levine, and D. Song, “Koala: A dialogue model for academic research,” Blog post, April, vol. 1, 2023.
- A. Zeng, X. Liu, Z. Du, Z. Wang, H. Lai, M. Ding, Z. Yang, Y. Xu, W. Zheng, X. Xia et al., “Glm-130b: An open bilingual pre-trained model,” arXiv preprint arXiv:2210.02414, 2022.
- A. Yang, B. Xiao, B. Wang, B. Zhang, C. Yin, C. Lv, D. Pan, D. Wang, D. Yan, F. Yang et al., “Baichuan 2: Open large-scale language models,” arXiv preprint arXiv:2309.10305, 2023.
- J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large language models,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 824–24 837, 2022.
- Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Hajishirzi, “Self-instruct: Aligning language model with self generated instructions,” arXiv preprint arXiv:2212.10560, 2022.
- Y. Li, Z. Li, K. Zhang, R. Dan, S. Jiang, and Y. Zhang, “Chatdoctor: A medical chat model fine-tuned on a large language model meta-ai (llama) using medical domain knowledge,” Cureus, vol. 15, no. 6, 2023.
- J. Cui, Z. Li, Y. Yan, B. Chen, and L. Yuan, “Chatlaw: Open-source legal large language model with integrated external knowledge bases,” arXiv preprint arXiv:2306.16092, 2023.
- H. Yang, X.-Y. Liu, and C. D. Wang, “Fingpt: Open-source financial large language models,” arXiv preprint arXiv:2306.06031, 2023.
- A. Baladn, I. Sastre, L. Chiruzzo, and A. Ros, “Retuyt-inco at bea 2023 shared task: Tuning open-source llms for generating teacher responses,” in Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), 2023, pp. 756–765.
- A. Tack, E. Kochmar, Z. Yuan, S. Bibauw, and C. Piech, “The bea 2023 shared task on generating ai teacher responses in educational dialogues,” arXiv preprint arXiv:2306.06941, 2023.
- Y. Dan, Z. Lei, Y. Gu, Y. Li, J. Yin, J. Lin, L. Ye, Z. Tie, Y. Zhou, Y. Wang et al., “Educhat: A large-scale language model-based chatbot system for intelligent education,” arXiv preprint arXiv:2308.02773, 2023.
- Y. Ji, Y. Deng, Y. Gong, Y. Peng, Q. Niu, L. Zhang, B. Ma, and X. Li, “Exploring the impact of instruction data scaling on large language models: An empirical study on real-world use cases,” arXiv preprint arXiv:2303.14742, 2023.
- T. Sun, X. Zhang, Z. He, P. Li, Q. Cheng, H. Yan, X. Liu, Y. Shao, Q. Tang, X. Zhao et al., “Moss: Training conversational language models from synthetic data,” arXiv preprint arXiv:2307.15020, vol. 7, 2023.
- C. Zhou, P. Liu, P. Xu, S. Iyer, J. Sun, Y. Mao, X. Ma, A. Efrat, P. Yu, L. Yu et al., “Lima: Less is more for alignment,” arXiv preprint arXiv:2305.11206, 2023.
- G. Zhang, Y. Shi, R. Liu, R. Yuan, Y. Li, S. Dong, Y. Shu, Z. Li, Z. Wang, C. Lin et al., “Chinese open instruction generalist: A preliminary release,” arXiv preprint arXiv:2304.07987, 2023.
- H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.
- E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” arXiv preprint arXiv:2106.09685, 2021.
- M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large language models trained on code,” arXiv preprint arXiv:2107.03374, 2021.
- R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source be with you!” arXiv preprint arXiv:2305.06161, 2023.
- N. Muennighoff, Q. Liu, A. Zebaze, Q. Zheng, B. Hui, T. Y. Zhuo, S. Singh, X. Tang, L. von Werra, and S. Longpre, “Octopack: Instruction tuning code large language models,” arXiv preprint arXiv:2308.07124, 2023.
- B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models for code,” arXiv preprint arXiv:2308.12950, 2023.
- F. Christopoulou, G. Lampouras, M. Gritta, G. Zhang, Y. Guo, Z. Li, Q. Zhang, M. Xiao, B. Shen, L. Li et al., “Pangu-coder: Program synthesis with function-level language modeling,” arXiv preprint arXiv:2207.11280, 2022.
- Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin, and D. Jiang, “Wizardcoder: Empowering code large language models with evol-instruct,” arXiv preprint arXiv:2306.08568, 2023.
- B. Liu, C. Chen, C. Liao, Z. Gong, H. Wang, Z. Lei, M. Liang, D. Chen, M. Shen, H. Zhou et al., “Mftcoder: Boosting code llms with multitask fine-tuning,” arXiv preprint arXiv:2311.02303, 2023.
- D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt, “Measuring massive multitask language understanding,” arXiv preprint arXiv:2009.03300, 2020.
- Y. Huang, Y. Bai, Z. Zhu, J. Zhang, J. Zhang, T. Su, J. Liu, C. Lv, Y. Zhang, J. Lei et al., “C-eval: A multi-level multi-discipline chinese evaluation suite for foundation models,” arXiv preprint arXiv:2305.08322, 2023.
- W. Zhong, R. Cui, Y. Guo, Y. Liang, S. Lu, Y. Wang, A. Saied, W. Chen, and N. Duan, “Agieval: A human-centric benchmark for evaluating foundation models,” arXiv preprint arXiv:2304.06364, 2023.
- R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos, L. Baker, Y. Du et al., “Lamda: Language models for dialog applications,” arXiv preprint arXiv:2201.08239, 2022.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.