Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid integrator-gain system based integral resonant controllers for negative imaginary systems (2403.15140v2)

Published 22 Mar 2024 in eess.SY, cs.SY, and math.OC

Abstract: We introduce a hybrid control system called a hybrid integrator-gain system (HIGS) based integral resonant controller (IRC) to stabilize negative imaginary (NI) systems. A HIGS-based IRC has a similar structure to an IRC, with the integrator replaced by a HIGS. We show that a HIGS-based IRC is an NI system. Also, for a SISO NI system with a minimal realization, we show there exists a HIGS-based IRC such that their closed-loop interconnection is asymptotically stable. Also, we propose a proportional-integral-double-integral resonant controller and a HIGS-based proportional-integral-double-integral resonant controller, and we show that both of them can be applied to asymptotically stabilize an NI system. An example is provided to illustrate the proposed results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. A. Lanzon and I. R. Petersen, “Stability robustness of a feedback interconnection of systems with negative imaginary frequency response,” IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 1042–1046, 2008.
  2. I. R. Petersen and A. Lanzon, “Feedback control of negative-imaginary systems,” IEEE Control Systems Magazine, vol. 30, no. 5, pp. 54–72, 2010.
  3. D. Halim and S. O. R. Moheimani, “Spatial resonant control of flexible structures-application to a piezoelectric laminate beam,” IEEE Transactions on Control Systems Technology, vol. 9, no. 1, pp. 37–53, 2001.
  4. H. Pota, S. O. R. Moheimani, and M. Smith, “Resonant controllers for smart structures,” Smart Materials and Structures, vol. 11, no. 1, p. 1, 2002.
  5. K. Shi, I. R. Petersen, and I. G. Vladimirov, “Necessary and sufficient conditions for state feedback equivalence to negative imaginary systems,” IEEE Transactions on Automatic Control (Early Acess), 2024.
  6. A. Lanzon and H.-J. Chen, “Feedback stability of negative imaginary systems,” IEEE Transactions on Automatic Control, vol. 62, no. 11, pp. 5620–5633, 2017.
  7. M. A. Mabrok, A. G. Kallapur, I. R. Petersen, and A. Lanzon, “Spectral conditions for negative imaginary systems with applications to nanopositioning,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 895–903, 2013.
  8. S. K. Das, H. R. Pota, and I. R. Petersen, “A MIMO double resonant controller design for nanopositioners,” IEEE Transactions on Nanotechnology, vol. 14, no. 2, pp. 224–237, 2014.
  9. ——, “Resonant controller design for a piezoelectric tube scanner: A mixed negative-imaginary and small-gain approach,” IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1899–1906, 2014.
  10. ——, “Multivariable negative-imaginary controller design for damping and cross coupling reduction of nanopositioners: a reference model matching approach,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 6, pp. 3123–3134, 2015.
  11. C. Cai and G. Hagen, “Stability analysis for a string of coupled stable subsystems with negative imaginary frequency response,” IEEE Transactions on Automatic Control, vol. 55, no. 8, pp. 1958–1963, 2010.
  12. M. A. Rahman, A. Al Mamun, K. Yao, and S. K. Das, “Design and implementation of feedback resonance compensator in hard disk drive servo system: A mixed passivity, negative-imaginary and small-gain approach in discrete time,” Journal of Control, Automation and Electrical Systems, vol. 26, no. 4, pp. 390–402, 2015.
  13. B. Bhikkaji, S. O. R. Moheimani, and I. R. Petersen, “A negative imaginary approach to modeling and control of a collocated structure,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 4, pp. 717–727, 2011.
  14. Y. Chen, K. Shi, I. R. Petersen, and E. L. Ratnam, “A nonlinear negative imaginary systems framework with actuator saturation for control of electrical power systems,” To appear in 2024 European Control Conference, 2023.
  15. A. G. Ghallab, M. A. Mabrok, and I. R. Petersen, “Extending negative imaginary systems theory to nonlinear systems,” in 2018 IEEE Conference on Decision and Control (CDC).   IEEE, 2018, pp. 2348–2353.
  16. K. Shi, I. G. Vladimirov, and I. R. Petersen, “Robust output feedback consensus for networked identical nonlinear negative-imaginary systems,” IFAC-PapersOnLine, vol. 54, no. 9, pp. 239–244, 2021.
  17. K. Shi, I. R. Petersen, and I. G. Vladimirov, “Output feedback consensus for networked heterogeneous nonlinear negative-imaginary systems with free-body motion,” IEEE Transactions on Automatic Control, vol. 68, no. 9, pp. 5536–5543, 2023.
  18. D. A. Deenen, M. F. Heertjes, W. Heemels, and H. Nijmeijer, “Hybrid integrator design for enhanced tracking in motion control,” in 2017 American Control Conference (ACC).   IEEE, 2017, pp. 2863–2868.
  19. R. H. Middleton, “Trade-offs in linear control system design,” Automatica, vol. 27, no. 2, pp. 281–292, 1991.
  20. S. Van den Eijnden, M. F. Heertjes, W. Heemels, and H. Nijmeijer, “Hybrid integrator-gain systems: A remedy for overshoot limitations in linear control?” IEEE Control Systems Letters, vol. 4, no. 4, pp. 1042–1047, 2020.
  21. D. Van Dinther, B. Sharif, S. Van den Eijnden, H. Nijmeijer, M. F. Heertjes, and W. Heemels, “Overcoming performance limitations of linear control with hybrid integrator-gain systems,” IFAC-PapersOnLine, vol. 54, no. 5, pp. 289–294, 2021.
  22. M. Heertjes, S. van Den Eijnden, and B. Sharif, “An overview on hybrid integrator-gain systems with applications to wafer scanners,” in 2023 IEEE International Conference on Mechatronics (ICM).   IEEE, 2023, pp. 1–8.
  23. D. A. Deenen, B. Sharif, S. van den Eijnden, H. Nijmeijer, M. Heemels, and M. Heertjes, “Projection-based integrators for improved motion control: Formalization, well-posedness and stability of hybrid integrator-gain systems,” Automatica, vol. 133, p. 109830, 2021.
  24. S. van den Eijnden, M. Heertjes, H. Nijmeijer, and W. Heemels, “A small-gain approach to incremental input-to-state stability analysis of hybrid integrator-gain systems,” IEEE Control Systems Letters, 2023.
  25. K. Shi, N. Nikooienejad, I. R. Petersen, and S. O. R. Moheimani, “A negative imaginary approach to hybrid integrator-gain system control,” in 2022 IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 1968–1973.
  26. ——, “Negative imaginary control using hybrid integrator-gain systems: Application to MEMS nanopositioner,” IEEE Transactions on Control Systems Technology (Early Access), 2023.
  27. K. Shi and I. R. Petersen, “Digital control of negative imaginary systems: a discrete-time hybrid integrator-gain system approach,” To appear in 2024 European Control Conference, 2024.
  28. S. S. Aphale, A. J. Fleming, and S. O. R. Moheimani, “Integral resonant control of collocated smart structures,” Smart materials and structures, vol. 16, no. 2, p. 439, 2007.
  29. B. Bhikkaji, S. O. R. Moheimani, and I. R. Petersen, “Multivariable integral control of resonant structures,” in 2008 47th IEEE Conference on Decision and Control.   IEEE, 2008, pp. 3743–3748.
  30. Y. Yue and Z. Song, “An integral resonant control scheme for a laser beam stabilization system,” in 2015 IEEE International Conference on Information and Automation.   IEEE, 2015, pp. 2221–2226.
  31. B. Bhikkaji and S. O. R. Moheimani, “Integral resonant control of a piezoelectric tube actuator for fast nanoscale positioning,” IEEE/ASME Transactions on mechatronics, vol. 13, no. 5, pp. 530–537, 2008.
  32. D. Russell and S. S. Aphale, “Evaluating the performance of robust controllers for a nanopositioning platform under loading.” IFAC-PapersOnLine, vol. 50, no. 1, pp. 10 895–10 900, 2017.
  33. J. Xiong, I. R. Petersen, and A. Lanzon, “A negative imaginary lemma and the stability of interconnections of linear negative imaginary systems,” IEEE Transactions on Automatic Control, vol. 55, no. 10, pp. 2342–2347, 2010.
  34. A. S. P., “HIGS-based skyhook damping design of a multivariable vibration isolation system,” Master’s thesis, Eindhoven University of Technology, 2020.

Summary

We haven't generated a summary for this paper yet.