Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Digital control of negative imaginary systems: a discrete-time hybrid integrator-gain system approach (2403.16046v1)

Published 24 Mar 2024 in eess.SY, cs.SY, and math.OC

Abstract: A hybrid integrator-gain system (HIGS) is a control element that switches between an integrator and a gain, which overcomes some inherent limitations of linear controllers. In this paper, we consider using discrete-time HIGS controllers for the digital control of negative imaginary (NI) systems. We show that the discrete-time HIGS themselves are step-advanced negative imaginary systems. For a minimal linear NI system, there always exists a HIGS controller that can asymptotically stablize it. An illustrative example is provided, where we use the proposed HIGS control method to stabilize a discrete-time mass-spring system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. D. A. Deenen, M. F. Heertjes, W. Heemels, and H. Nijmeijer, “Hybrid integrator design for enhanced tracking in motion control,” in 2017 American Control Conference (ACC).   IEEE, 2017, pp. 2863–2868.
  2. R. H. Middleton, “Trade-offs in linear control system design,” Automatica, vol. 27, no. 2, pp. 281–292, 1991.
  3. J. Freudenberg, R. Middleton, and A. Stefanpoulou, “A survey of inherent design limitations,” in Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334), vol. 5.   IEEE, 2000, pp. 2987–3001.
  4. J. C. Clegg, “A nonlinear integrator for servomechanisms,” Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, vol. 77, no. 1, pp. 41–42, 1958.
  5. I. Horowitz and P. Rosenbaum, “Non-linear design for cost of feedback reduction in systems with large parameter uncertainty,” International Journal of Control, vol. 21, no. 6, pp. 977–1001, 1975.
  6. Y. Chait and C. Hollot, “On Horowitz’s contributions to reset control,” International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, vol. 12, no. 4, pp. 335–355, 2002.
  7. G. Bartolini, “Chattering phenomena in discontinuous control systems,” International journal of systems science, vol. 20, no. 12, pp. 2471–2481, 1989.
  8. S. Van den Eijnden, M. F. Heertjes, W. Heemels, and H. Nijmeijer, “Hybrid integrator-gain systems: A remedy for overshoot limitations in linear control?” IEEE Control Systems Letters, vol. 4, no. 4, pp. 1042–1047, 2020.
  9. D. A. Deenen, B. Sharif, S. van den Eijnden, H. Nijmeijer, M. Heemels, and M. Heertjes, “Projection-based integrators for improved motion control: Formalization, well-posedness and stability of hybrid integrator-gain systems,” Automatica, vol. 133, p. 109830, 2021.
  10. S. J. Van Den Eijnden, M. F. Heertjes, W. M. Heemels, and H. Nijmeijer, “Frequency-domain tools for stability analysis of hybrid integrator-gain systems,” in 2021 European Control Conference (ECC).   IEEE, 2021, pp. 1895–1900.
  11. D. Van Dinther, B. Sharif, S. Van den Eijnden, H. Nijmeijer, M. F. Heertjes, and W. Heemels, “Overcoming performance limitations of linear control with hybrid integrator-gain systems,” IFAC-PapersOnLine, vol. 54, no. 5, pp. 289–294, 2021.
  12. S. van den Eijnden, M. Heertjes, H. Nijmeijer, and W. Heemels, “A small-gain approach to incremental input-to-state stability analysis of hybrid integrator-gain systems,” IEEE Control Systems Letters, 2023.
  13. W. Heemels and A. Tanwani, “Existence and completeness of solutions to extended projected dynamical systems and sector-bounded projection-based controllers,” IEEE Control Systems Letters, 2023.
  14. M. Heertjes, S. van Den Eijnden, and B. Sharif, “An overview on hybrid integrator-gain systems with applications to wafer scanners,” in 2023 IEEE International Conference on Mechatronics (ICM).   IEEE, 2023, pp. 1–8.
  15. K. Shi, N. Nikooienejad, I. R. Petersen, and S. R. Moheimani, “A negative imaginary approach to hybrid integrator-gain system control,” in 2022 IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 1968–1973.
  16. A. Lanzon and I. R. Petersen, “Stability robustness of a feedback interconnection of systems with negative imaginary frequency response,” IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 1042–1046, 2008.
  17. I. R. Petersen and A. Lanzon, “Feedback control of negative-imaginary systems,” IEEE Control Systems Magazine, vol. 30, no. 5, pp. 54–72, 2010.
  18. J. Xiong, I. R. Petersen, and A. Lanzon, “A negative imaginary lemma and the stability of interconnections of linear negative imaginary systems,” IEEE Transactions on Automatic Control, vol. 55, no. 10, pp. 2342–2347, 2010.
  19. Z. Song, A. Lanzon, S. Patra, and I. R. Petersen, “A negative-imaginary lemma without minimality assumptions and robust state-feedback synthesis for uncertain negative-imaginary systems,” Systems & Control Letters, vol. 61, no. 12, pp. 1269–1276, 2012.
  20. M. A. Mabrok, A. G. Kallapur, I. R. Petersen, and A. Lanzon, “Generalizing negative imaginary systems theory to include free body dynamics: Control of highly resonant structures with free body motion,” IEEE Transactions on Automatic Control, vol. 59, no. 10, pp. 2692–2707, 2014.
  21. J. Wang, A. Lanzon, and I. R. Petersen, “Robust cooperative control of multiple heterogeneous negative-imaginary systems,” Automatica, vol. 61, pp. 64–72, 2015.
  22. P. Bhowmick and S. Patra, “On LTI output strictly negative-imaginary systems,” Systems & Control Letters, vol. 100, pp. 32–42, 2017.
  23. D. Halim and S. R. Moheimani, “Spatial resonant control of flexible structures-application to a piezoelectric laminate beam,” IEEE Transactions on Control Systems Technology, vol. 9, no. 1, pp. 37–53, 2001.
  24. H. Pota, S. R. Moheimani, and M. Smith, “Resonant controllers for smart structures,” Smart Materials and Structures, vol. 11, no. 1, p. 1, 2002.
  25. K. Shi, I. R. Petersen, and I. G. Vladimirov, “Necessary and sufficient conditions for state feedback equivalence to negative imaginary systems,” IEEE Transactions on Automatic Control (Early Access), 2024.
  26. M. A. Mabrok, A. G. Kallapur, I. R. Petersen, and A. Lanzon, “Spectral conditions for negative imaginary systems with applications to nanopositioning,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 895–903, 2013.
  27. S. K. Das, H. R. Pota, and I. R. Petersen, “A MIMO double resonant controller design for nanopositioners,” IEEE Transactions on Nanotechnology, vol. 14, no. 2, pp. 224–237, 2014.
  28. ——, “Resonant controller design for a piezoelectric tube scanner: A mixed negative-imaginary and small-gain approach,” IEEE Transactions on Control Systems Technology, vol. 22, no. 5, pp. 1899–1906, 2014.
  29. ——, “Multivariable negative-imaginary controller design for damping and cross coupling reduction of nanopositioners: a reference model matching approach,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 6, pp. 3123–3134, 2015.
  30. C. Cai and G. Hagen, “Stability analysis for a string of coupled stable subsystems with negative imaginary frequency response,” IEEE Transactions on Automatic Control, vol. 55, no. 8, pp. 1958–1963, 2010.
  31. M. A. Rahman, A. Al Mamun, K. Yao, and S. K. Das, “Design and implementation of feedback resonance compensator in hard disk drive servo system: A mixed passivity, negative-imaginary and small-gain approach in discrete time,” Journal of Control, Automation and Electrical Systems, vol. 26, no. 4, pp. 390–402, 2015.
  32. B. Bhikkaji, S. R. Moheimani, and I. R. Petersen, “A negative imaginary approach to modeling and control of a collocated structure,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 4, pp. 717–727, 2011.
  33. Y. Chen, K. Shi, I. R. Petersen, and E. L. Ratnam, “A nonlinear negative imaginary systems framework with actuator saturation for control of electrical power systems,” To appear in 2024 European Control Conference, also available as arXiv preprint:2311.06820, 2023.
  34. A. G. Ghallab, M. A. Mabrok, and I. R. Petersen, “Extending negative imaginary systems theory to nonlinear systems,” in 2018 IEEE Conference on Decision and Control (CDC).   IEEE, 2018, pp. 2348–2353.
  35. K. Shi, I. G. Vladimirov, and I. R. Petersen, “Robust output feedback consensus for networked identical nonlinear negative-imaginary systems,” IFAC-PapersOnLine, vol. 54, no. 9, pp. 239–244, 2021.
  36. K. Shi, I. R. Petersen, and I. G. Vladimirov, “Output feedback consensus for networked heterogeneous nonlinear negative-imaginary systems with free-body motion,” IEEE Transactions on Automatic Control, vol. 68, no. 9, pp. 5536–5543, 2023.
  37. K. Shi, N. Nikooienejad, I. R. Petersen, and S. R. Moheimani, “Negative imaginary control using hybrid integrator-gain systems: Application to MEMS nanopositioner,” IEEE Transactions on Control Systems Technology (Early Access), 2023.
  38. A. S. P., “HIGS-based skyhook damping design of a multivariable vibration isolation system,” Master’s thesis, Eindhoven University of Technology, 2020.
  39. B. Sharif, D. W. Alferink, M. F. Heertjes, H. Nijmeijer, and W. Heemels, “A discrete-time approach to analysis of sampled-data hybrid integrator-gain systems,” in 2022 IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 7612–7617.
  40. K. Shi, I. R. Petersen, and I. G. Vladimirov, “Discrete-time negative imaginary systems from zoh sampling,” Submitted to the 26th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2024), also available as arXiv preprint:2312.05419, 2023.
  41. A. Ferrante, A. Lanzon, and L. Ntogramatzidis, “Discrete-time negative imaginary systems,” Automatica, vol. 79, pp. 1–10, 2017.
  42. D. Nešić, A. R. Teel, and P. V. Kokotović, “Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximations,” Systems & Control Letters, vol. 38, no. 4-5, pp. 259–270, 1999.
  43. R. E. Kalman and J. E. Bertram, “Control system analysis and design via the “second method” of Lyapunov: II-discrete-time systems,” Journal of Basic Engineering, vol. 82, pp. 394–400, 1960.
Citations (1)

Summary

We haven't generated a summary for this paper yet.