Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Electrostatic wave interaction via asymmetric vector solitons as precursor to rogue wave formation in non-Maxwellian plasmas (2403.14505v1)

Published 21 Mar 2024 in physics.plasm-ph and nlin.PS

Abstract: An asymmetric pair of coupled nonlinear Schr{\"o}dinger (CNLS) equations has been derived through a multiscale perturbation method applied to a plasma fluid model, in which two wavepackets of distinct carrier wavenumbers and amplitudes are allowed to co-propagate and interact. The original fluid model was set up for a non-magnetized plasma consisting of cold inertial ions evolving against a $\kappa-$distributed electron background in 1D. The reduction procedure resulting in the CNLS equations has provided analytical expressions for the dispersion, self-modulation and cross-coupling coefficients in terms of the carrier wavenumbers. The system admits various types of vector solitons (VSs), physically representing nonlinear localized electrostatic plasma modes. The possibility for either bright (B) or dark (D) type excitations for either of the two waves provides four combinations for the envelope pair (BB, BD, DB, DD). Moreover, the soliton parameters are also calculated for each type of VS in its respective area of existence. The dependence of the VS characteristics on the carrier wavenumbers and the spectral index $\kappa$ has been explored. In certain cases, the amplitude of one component may exceed its counterpart (second amplitude) by a factor 2.5 or higher, indicating that extremely asymmetric waves may be formed due to modulational interactions among the wavepackets. As $\kappa$ decreases from large values, modulational instability (MI) occurs in larger areas of the parameter plane(s) and with higher growth rates. The distribution of different types of VSs on the parameter plane(s) also varies significantly with decreasing $\kappa$, and in fact dramatically for $\kappa$ between $3$ and $2$. Deviation from the Maxwell-Boltzmann picture therefore seems to favor MI as a precursor to the formation of bright (predominantly) type envelope excitations and freak waves.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. Coupled nonlinear schrödinger equations in optic fibers theory - from general to solitonic aspects. \JournalTitleEur. Phys. J.-Spec. Top. 173, DOI: 10.1140/epjst/e2009-01066-x (2009).
  2. Dark-bright solitons in coupled nonlinear schrödinger equations with unequal dispersion coefficients. \JournalTitlePhys. Rev. E 91, DOI: https://doi.org/10.1103/PhysRevE.91.012924 (2015).
  3. Solitons in coupled nonlinear schrödinger models: A survey of recent developments. \JournalTitleReviews in Physics 1, DOI: http://dx.doi.org/10.1016/j.revip.2016.07.002 (2016).
  4. Nondegenerate bright solitons in coupled nonlinear schrödinger systems: Recent developments on optical vector solitons. \JournalTitlePhotonics 8, DOI: https://doi.org/10.3390/photonics8070258 (2021).
  5. Experimental evidence of nonlinear focusing in standing water waves. \JournalTitlePhys. Rev. Lett. 129, DOI: https://doi.org/10.1103/PhysRevLett.129.144502 (2022).
  6. Interacting nonlinear wave envelopes and rogue wave formation in deep water. \JournalTitlePhys. Fluids 27, DOI: https://doi.org/10.1063/1.4906770 (2015).
  7. Coupled backward- and forward-propagating solitons in a composite right- and left-handed transmission line. \JournalTitlePhys. Rev. E 88, DOI: https://doi.org/10.1103/PhysRevE.88.013203 (2013).
  8. Menyuk, C. R. Stability of solitons in birefringent optical fibers. i: Equal propagation amplitudes. \JournalTitleOpt. Lett. 2 (8), DOI: 10.1364/OL.12.000614 (1987).
  9. Frisquet, B. et al. Optical dark rogue wave. \JournalTitleSci. Rep. 6, DOI: https://doi.org/10.1038/srep20785 (2016).
  10. Optical soliton and modulation instability in the high birefringence fiber. \JournalTitleNonlinear Dyn. 108, DOI: https://doi.org/10.1007/s11071-022-07212-0 (2022).
  11. Vector dark solitons. \JournalTitleOpt. Lett. 18 (5), DOI: https://doi.org/10.1364/OL.18.000337 (1993).
  12. Coupled nonlinear schrödinger field equations for electromagnetic wave propagation in nonlinear left-handed materials. \JournalTitlePhys. Rev. E 71, DOI: https://doi.org/10.1103/PhysRevE.71.036614 (2005).
  13. Tyutin, V. V. Extended vector solitons with significantly different frequencies of the polarization components. \JournalTitleJETP Lett. 115 (10), DOI: https://doi.org/10.1134/S0021364022600690 (2022).
  14. Spatial solitons in an electrically driven graphene multilayer medium. \JournalTitleSci. Rep. 12, DOI: https://doi.org/10.1038/s41598-022-15179-6 (2022).
  15. Bifurcation phenomena and multiple soliton-bound states in isotropic kerr media. \JournalTitlePhys. Rev. E 49 (4), DOI: https://doi.org/10.1103/PhysRevE.49.3376 (1994).
  16. Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear schrödinger system in an optical fiber. \JournalTitleNonlinear Dyn. 111, DOI: https://doi.org/10.1007/s11071-022-08058-2 (2023).
  17. The modulational instability of coupled waves. \JournalTitlePhysics of Fluids B: Plasma Physics 1, DOI: https://doi.org/10.1063/1.859095 (1989).
  18. The modulational instability of colinear waves. \JournalTitlePhys. Scripta 30, DOI: https://doi.org/10.1364/JOSAB.7.001125 (1990).
  19. Transverse modulational instability of collinear waves. \JournalTitleJ. Opt. Soc. Am. B 7 (6), DOI: https://doi.org/10.1364/JOSAB.7.001125 (1990).
  20. Transverse modulational instability of counterpropagating light waves. \JournalTitleJ. Opt. Soc. Am. B 9 (7), DOI: https://doi.org/10.1364/JOSAB.9.001047 (1992).
  21. Spatschek, K. H. Coupled localized electron-plasma waves and oscillatory ion-acoustic perturbations. \JournalTitlePhys. Fluids 21, DOI: https://doi.org/10.1063/1.862323 (1978).
  22. Coupled nonlinear schrödinger equation for langmuir and dispersive ion-acoustic waves. \JournalTitlePhys. Lett. A 72A (2), DOI: https://doi.org/10.1016/0375-9601(79)90663-7 (1979).
  23. Modulational instability and localized excitations involving two nonlinearly coupled upper-hybrid waves in plasmas. \JournalTitleNew J. Phys. 7, DOI: https://dx.doi.org/10.1088/1367-2630/7/1/153 (2005).
  24. Singh, V. Modulation instability of two laser beams in plasma. \JournalTitleLaser Part. Beams 31 (4), DOI: https://doi.org/10.1017/S0263034613000748 (2013).
  25. Copropagation of coupled laser pulses in magnetized plasmas: Modulational instability and coupled solitons. \JournalTitlePhys. Plasmas 24, DOI: https://doi.org/10.1063/1.4978576 (2017).
  26. Modulational instability of coupled waves in electronegative plasmas. \JournalTitlePhys. Scripta 95, DOI: https://doi.org/10.1088/1402-4896/ab8f40 (2020).
  27. Modulational electrostatic wave-wave interactions in plasma fluids modeled by asymmetric coupled nonlinear schrödinger (cnls) equations. \JournalTitleChaos, Solitons &\&& Fractals 175, DOI: https://doi.org/10.1016/j.chaos.2023.113974 (2023).
  28. Coupled nonlinear schrödinger (cnls) equations for two interacting electrostatic wavepackets in a non-maxwellian fluid plasma model. \JournalTitleNonlinear Dyn., accepted for publication -, DOI: https://doi.org/10.21203/rs.3.rs-3034641/v1 (2023).
  29. Coupling between dark and bright solitons. \JournalTitlePhys. Lett. A 215 (1-2), DOI: https://doi.org/10.1016/0375-9601(96)00208-3 (1996).
  30. Rogue wave, breathers and bright-dark-rogue solutions for the coupled schrödinger equations. \JournalTitleChin. Phys. Lett 28 (11), DOI: 10.1088/0256-307X/28/11/110202 (2011).
  31. Solutions of the vector nonlinear schrödinger equations: Evidence for deterministic rogue waves. \JournalTitlePhys. Rev. Lett. 109, DOI: https://doi.org/10.1103/PhysRevLett.109.044102 (2012).
  32. Theoretical and experimental evidence of non-symmetric doubly localized rogue waves. \JournalTitleProc. R. Soc. A 470, DOI: http://dx.doi.org/10.1098/rspa.2014.0318 (2014).
  33. Breathers and ‘black’ rogue waves of coupled nonlinear schrödinger equations with dispersion and nonlinearity of opposite signs. \JournalTitleCommun. Nonlinear Sci. Numer. Simulat. 28, DOI: http://dx.doi.org/10.1016/j.cnsns.2015.03.019 (2015).
  34. Bright-dark and dark-dark solitons in coupled nonlinear schrödinger equation with-symmetric potentials. \JournalTitleChaos 27, DOI: https://doi.org/10.1063/1.4997534 (2017).
  35. Breather and rogue wave solutions of coupled derivative nonlinear schrödinger equations. \JournalTitleNonlinear Dyn. 107, DOI: https://doi.org/10.1007/s11071-021-07050-6 (2022).
  36. The breather and semi-rational rogue wave solutions for the coupled mixed derivative nonlinear schrödinger equations. \JournalTitleNonlinear Dyn. 111, DOI: https://doi.org/10.1007/s11071-022-07834-4 (2023).
  37. Jiang, Y. et al. Soliton interactions and complexes for coupled nonlinear schrödinger equations. \JournalTitlePhys. Rev. E 85, DOI: 10.1103/PhysRevE.85.036605 (2012).
  38. Yang, D.-Y. et al. Lax pair, darboux transformation, breathers and rogue waves of an n-coupled nonautonomous nonlinear schrödinger system for an optical fiber or a plasma. \JournalTitleNonlinear Dyn. 107, DOI: https://doi.org/10.1007/s11071-021-06886-2 (2022).
  39. Non-degenerate multi-rogue waves and easy ways of their excitation. \JournalTitlePhysica D 433, DOI: https://doi.org/10.1016/j.physd.2022.133192 (2022).
  40. Bright–dark solitons in the space-shifted nonlocal coupled nonlinear schrödinger equation. \JournalTitleNonlinear Dyn. 108, DOI: https://doi.org/10.1007/s11071-022-07269-x (2022).
  41. New rogue waves and dark-bright soliton solutions for a coupled nonlinear schrödinger equation with variable coefficients. \JournalTitleAppl. Math. Comput. 233, DOI: http://dx.doi.org/10.1016/j.amc.2014.02.023 (2014).
  42. Rogue waves and solitons of the coherently-coupled nonlinear schrödinger equations with the positive coherent coupling. \JournalTitlePhys. Scripta 93, DOI: https://doi.org/10.1088/1402-4896/aacfc6 (2018).
  43. Generation and transformation of dark solitons, anti-dark solitons and dark double-hump solitons. \JournalTitleNonlinear Dyn. 110, DOI: https://doi.org/10.1007/s11071-022-07673-3 (2022).
  44. Understanding kappa distributions: A toolbox for space science and astrophysics. \JournalTitleSpace Sci. Rev. 175, DOI: https://doi.org/10.1007/s11214-013-9982-9 (2013).
  45. Livadiotis, G. Introduction to special section on origins and properties of kappa distributions: Statistical background and properties of kappa distributions in space plasmas. \JournalTitleJ. Geophys. Res. Space Phys. 120 (3), DOI: https://doi.org/10.1002/2014JA020825 (2015).
  46. Livadiotis, G. Collision frequency and mean free path for plasmas described by kappa distributions. \JournalTitleAIP Advances 9, DOI: doi:10.1063/1.5125714 (2019).
  47. On the determination of kappa distribution functions from space plasma observations. \JournalTitleEntropy 22, DOI: https://doi.org/10.3390/e22020212 (2020).
  48. Electrostatic wave breaking limit in a cold electronegative plasma with non-maxwellian electrons. \JournalTitleSci. Rep. 11, DOI: https://doi.org/10.1038/s41598-021-85228-z (2021).
  49. Plasma oscillations and spectral index in non-extensive statistics. \JournalTitlePhysica A 593, DOI: https://doi.org/10.1016/j.physa.2022.126909 (2022).
  50. Mukherjee, A. Wave breaking feld of relativistically intense electrostatic waves in electronegative plasma with super-thermal electrons. \JournalTitleSci. Rep. 12, DOI: https://doi.org/10.1038/s41598-022-16481-z (2022).
  51. Hatami, M. M. Investigation of sheath properties in a warm plasma with two kappa-distributed electrons and monoenergetic electron beam. \JournalTitleSci. Rep. 12, DOI: https://doi.org/10.1038/s41598-022-08436-1 (2022).
  52. Livadiotis, G. Kappa distributions: theory and applications in plasmas (Elsevier, Amsterdam, Netherlands;, 2017).
  53. Electrostatic solitary waves in a multi-ion plasma with two suprathermal electron populations – application to saturn’s magnetosphere. \JournalTitleMonthly Notices of the Royal Astronomical Society, submitted (under review) (2023).
  54. Manakov, S. V. On the theory of two-dimensional stationary self-focusing of electromagnetic waves. \JournalTitleSov. Phys.-JETP 38 (2) (1974).
  55. Coupled-mode envelope solitary waves in a pair of cubic schrödinger equations with cross modulation: Analytical solution and collisions with applications to rossby waves. \JournalTitleChaos, Solitons &\&& Fractals 11, DOI: https://doi.org/10.1016/S0960-0779(99)00016-8 (2000).
  56. Stability and long time evolution of the periodic solutions to the two coupled nonlinear schrödinger equations. \JournalTitleChaos, Solitons &\&& Fractals 12, DOI: https://doi.org/10.1016/S0960-0779(00)00026-6 (2001).
  57. Dust ion acoustic solitons in a plasma with kappa-distributed electrons. \JournalTitlePhys. Plasmas 17, DOI: 10.1063/1.3400229 (2017).
  58. Beyond kappa distributions: exploiting tsallis statistical mechanics in space. \JournalTitleJ. Geophys. Res. 114, DOI: 10.1029/2009JA014352 (2009).
  59. Determining the kappa distributions of space plasmas from observations in a limited energy range. \JournalTitleAstrophys. J. 864, DOI: https://doi.org/10.3847/1538-4357/aad45d (2018).
  60. Kappa distributions: Theory and applications in space plasmas. \JournalTitleSolar Phys. 267, DOI: 10.1007/s11207-010-9640-2 (2010).
  61. Modulational instability in asymmetric coupled wave functions. \JournalTitleEur. Phys. J. B 50, DOI: https://doi.org/10.1140/epjb/e2006-00106-1 (2006).
  62. Kivshar, Y. S. Soliton stability in birefringent optical fibers: An analytical approach. \JournalTitleJ. Opt. Soc. Am. B 7 (11), DOI: https://doi.org/10.1364/JOSAB.7.002204 (1990).
  63. Stability of multihump optical solitons. \JournalTitlePhys. Rev. Lett. 83, DOI: https://doi.org/10.1103/PhysRevLett.83.296 (1999).
  64. Electrostatic solitary waves with distinct speeds associated with asymmetric reconnection. \JournalTitleGeophys. Res. Lett. 42, DOI: doi:10.1002/2014GL062538 (2015).
  65. Electrostatic solitary structures in space plasmas: Soliton perspective. \JournalTitlePlasma 4, DOI: https://doi.org/10.3390/plasma4040035 (2021).
  66. Trines, R. et al. Spontaneous generation of self-organized solitary wave structures at earth’s magnetopause. \JournalTitlePhys. Rev. Lett. 99, DOI: https://doi.org/10.1103/PhysRevLett.99.205006 (2007).
  67. Stasiewicz, K. Theory and observations of slow-mode solitons in space plasmas. \JournalTitlePhys. Rev. Lett. 93 (12), DOI: https://doi.org/10.1103/PhysRevLett.93.125004 (2004).
  68. Ji, X.-F. et al. Emhd theory and observations of electron solitary waves in magnetotail plasmas. \JournalTitleJ. Geophys. Res. Space Phys. 119, DOI: 10.1002/2014JA019924 (2014).
  69. Observation of peregrine solitons in a multicomponent plasma with negative ions. \JournalTitlePhys. Rev. Lett. 107, DOI: https://doi.org/10.1103/PhysRevLett.107.255005 (2011).
  70. Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability. \JournalTitleNonlinearity 27, DOI: 10.1088/0951-7715/27/4/R1 (2014).
Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com