Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Causal Bayesian Network and Probabilistic Programming Based Reasoning Framework for Robot Manipulation Under Uncertainty (2403.14488v2)

Published 21 Mar 2024 in cs.RO, cs.AI, cs.LG, and stat.AP

Abstract: Robot object manipulation in real-world environments is challenging because robot operation must be robust to a range of sensing, estimation, and actuation uncertainties to avoid potentially unsafe and costly mistakes that are a barrier to their adoption. In this paper, we propose a flexible and generalisable physics-informed causal Bayesian network (CBN) based framework for a robot to probabilistically reason about candidate manipulation actions, to enable robot decision-making robust to arbitrary robot system uncertainties -- the first of its kind to use a probabilistic programming language implementation. Using experiments in high-fidelity Gazebo simulation of an exemplar block stacking task, we demonstrate our framework's ability to: (1) predict manipulation outcomes with high accuracy (Pred Acc: 88.6%); and, (2) perform greedy next-best action selection with 94.2% task success rate. We also demonstrate our framework's suitability for real-world robot systems with a domestic robot. Thus, we show that by combining probabilistic causal modelling with physics simulations, we can make robot manipulation more robust to system uncertainties and hence more feasible for real-world applications. Further, our generalised reasoning framework can be used and extended for future robotics and causality research.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. H. Kurniawati, “Partially observable markov decision processes and robotics,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 5, no. 1, pp. 253–277, 2022.
  2. M. Suomalainen, Y. Karayiannidis, and V. Kyrki, “A survey of robot manipulation in contact,” Robotics and Autonomous Systems, vol. 156, p. 104224, 2022.
  3. J. Collins, M. Robson, J. Yamada, M. Sridharan, K. Janik, and I. Posner, “Ramp: A benchmark for evaluating robotic assembly manipulation and planning,” 2023.
  4. J. Yamada, J. Collins, and I. Posner, “Efficient skill acquisition for complex manipulation tasks in obstructed environments,” 2023.
  5. S. Gubbi, S. Kolathaya, and B. Amrutur, “Imitation learning for high precision peg-in-hole tasks,” in 2020 6th International Conference on Control, Automation and Robotics (ICCAR), pp. 368–372, IEEE, 2020.
  6. J. Luo, O. Sushkov, R. Pevceviciute, W. Lian, C. Su, M. Vecerik, N. Ye, S. Schaal, and J. Scholz, “Robust multi-modal policies for industrial assembly via reinforcement learning and demonstrations: A large-scale study,” 2021.
  7. N. Ganguly, D. Fazlija, M. Badar, M. Fisichella, S. Sikdar, J. Schrader, J. Wallat, K. Rudra, M. Koubarakis, G. K. Patro, W. Z. E. Amri, and W. Nejdl, “A review of the role of causality in developing trustworthy ai systems,” 2023.
  8. T. Hellström, “The relevance of causation in robotics: A review, categorization, and analysis,” Paladyn, Journal of Behavioral Robotics, vol. 12, pp. 238–255, 2021.
  9. B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building machines that learn and think like people,” Behavioral and Brain Sciences, vol. 40, p. e253, 11 2017.
  10. L. Castri, G. Beraldo, S. Mghames, M. Hanheide, and N. Bellotto, “Ros-causal: A ros-based causal analysis framework for human-robot interaction applications,” in Causal-HRI: Causal Learning for Human-Robot Interaction” workshop at the 2024 ACM/IEEE International Conference on Human-Robot Interaction (HRI), March 2024.
  11. J. Pearl, “The seven tools of causal inference, with reflections on machine learning,” Commun. ACM, vol. 62, pp. 54–60, 2 2019.
  12. C. Uhde, N. Berberich, K. Ramirez-Amaro, and G. Cheng, “The robot as scientist: Using mental simulation to test causal hypotheses extracted from human activities in virtual reality,” pp. 8081–8086, 2020.
  13. M. Diehl and K. Ramirez-Amaro, “Why did i fail? a causal-based method to find explanations for robot failures,” IEEE Robotics and Automation Letters, vol. 7, pp. 8925–8932, 2022.
  14. M. Diehl and K. Ramirez-Amaro, “A causal-based approach to explain, predict and prevent failures in robotic tasks,” Robotics and Autonomous Systems, vol. 162, p. 104376, 2023.
  15. O. Ahmed, F. Träuble, A. Goyal, A. Neitz, M. Wüthrich, Y. Bengio, B. Schölkopf, and S. Bauer, “Causalworld: A robotic manipulation benchmark for causal structure and transfer learning,” 2020.
  16. E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman, “Pyro: Deep universal probabilistic programming,” Journal of Machine Learning Research, vol. 20, 2019.
  17. R. Cannizzaro and L. Kunze, “Car-despot: Causally-informed online pomdp planning for robots in confounded environments,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 4 2023.
  18. Cambridge university press, 2009.
  19. T. Gerstenberg, “What would have happened? counterfactuals, hypotheticals and causal judgements,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 377, 12 2022.
  20. R. Cannizzaro, J. Routley, and L. Kunze, “Towards a causal probabilistic framework for prediction, action-selection & explanations for robot block-stacking tasks,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2023 Workshop on Causality for Robotics, 2023.
  21. R. Cannizzaro, R. Howard, P. Lewinska, and L. Kunze, “Towards probabilistic causal discovery, inference & explanations for autonomous drones in mine surveying tasks,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2023 Workshop on Causality for Robotics, 2023.
  22. L. Mösenlechner and M. Beetz, “Parameterizing actions to have the appropriate effects,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4141–4147, 2011.
  23. L. Kunze and M. Beetz, “Envisioning the qualitative effects of robot manipulation actions using simulation-based projections,” Artificial Intelligence, vol. 247, pp. 352–380, 2017. Special Issue on AI and Robotics.
  24. M. Beetz, D. Jain, L. Mosenlechner, M. Tenorth, L. Kunze, N. Blodow, and D. Pangercic, “Cognition-enabled autonomous robot control for the realization of home chore task intelligence,” Proceedings of the IEEE, vol. 100, no. 8, pp. 2454–2471, 2012.
  25. J. Pearl and D. Mackenzie, The book of why: the new science of cause and effect. Basic books, 2018.
  26. E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning,” 2016. http://pybullet.org, accessed 2024-03-15.
  27. Toyota Motor Corporation, “Human support robot (hsr),” n.d. https://mag.toyota.co.uk/toyota-human-support-robot, accessed 2024-03-15.
  28. N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), pp. 2149–2154 vol.3, IEEE, 2004.
  29. S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez, “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014.
  30. D. Coleman, I. A. Sucan, S. Chitta, and N. Correll, “Reducing the barrier to entry of complex robotic software: a moveit! case study,” Journal of Software Engineering for Robotics, vol. 5, pp. 3–16, May 2014.

Summary

We haven't generated a summary for this paper yet.