Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximal $α$-Leakage for Quantum Privacy Mechanisms (2403.14450v1)

Published 21 Mar 2024 in quant-ph, cs.CR, cs.IT, and math.IT

Abstract: In this work, maximal $\alpha$-leakage is introduced to quantify how much a quantum adversary can learn about any sensitive information of data upon observing its disturbed version via a quantum privacy mechanism. We first show that an adversary's maximal expected $\alpha$-gain using optimal measurement is characterized by measured conditional R\'enyi entropy. This can be viewed as a parametric generalization of K\"onig et al.'s famous guessing probability formula [IEEE Trans. Inf. Theory, 55(9), 2009]. Then, we prove that the $\alpha$-leakage and maximal $\alpha$-leakage for a quantum privacy mechanism are determined by measured Arimoto information and measured R\'enyi capacity, respectively. Various properties of maximal $\alpha$-leakage, such as data processing inequality and composition property are established as well. Moreover, we show that regularized $\alpha$-leakage and regularized maximal $\alpha$-leakage for identical and independent quantum privacy mechanisms coincide with $\alpha$-tilted sandwiched R\'enyi information and sandwiched R\'enyi capacity, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse datasets,” in 2008 IEEE Symposium on Security and Privacy (sp 2008).   IEEE, 2008, pp. 111–125.
  2. M. Hu, “Cambridge analytica’s black box,” Big Data & Society, vol. 7, no. 2, p. 2053951720938091, 2020.
  3. K. Abouelmehdi, A. Beni-Hessane, and H. Khaloufi, “Big healthcare data: preserving security and privacy,” Journal of big data, vol. 5, no. 1, pp. 1–18, 2018.
  4. C. Dwork, “Differential privacy,” in International colloquium on automata, languages, and programming.   Springer, 2006, pp. 1–12.
  5. C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,” Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 2014.
  6. D. Kifer and A. Machanavajjhala, “Pufferfish: A framework for mathematical privacy definitions,” ACM Transactions on Database Systems (TODS), vol. 39, no. 1, pp. 1–36, 2014.
  7. C. E. Shannon, “Communication theory of secrecy systems,” The Bell system technical journal, vol. 28, no. 4, pp. 656–715, 1949.
  8. N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” arXiv preprint physics/0004057, 2000.
  9. F. du Pin Calmon and N. Fawaz, “Privacy against statistical inference,” in 2012 50th annual Allerton conference on communication, control, and computing (Allerton).   IEEE, 2012, pp. 1401–1408.
  10. L. Sankar, S. R. Rajagopalan, and H. V. Poor, “Utility-privacy tradeoffs in databases: An information-theoretic approach,” IEEE Transactions on Information Forensics and Security, vol. 8, no. 6, pp. 838–852, 2013.
  11. S. Asoodeh, M. Diaz, F. Alajaji, and T. Linder, “Information extraction under privacy constraints,” Information, vol. 7, no. 1, p. 15, 2016.
  12. H. Wang and F. P. Calmon, “An estimation-theoretic view of privacy,” in 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).   IEEE, 2017, pp. 886–893.
  13. S. Asoodeh, M. Diaz, F. Alajaji, and T. Linder, “Privacy-aware guessing efficiency,” in 2017 ieee international symposium on information theory (isit).   IEEE, 2017, pp. 754–758.
  14. ——, “Estimation efficiency under privacy constraints,” IEEE Transactions on Information Theory, vol. 65, no. 3, pp. 1512–1534, 2018.
  15. I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to information leakage,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1625–1657, 2019.
  16. J. Liao, O. Kosut, L. Sankar, and F. du Pin Calmon, “Tunable measures for information leakage and applications to privacy-utility tradeoffs,” IEEE Transactions on Information Theory, vol. 65, no. 12, pp. 8043–8066, 2019.
  17. A. Gilani, G. R. Kurri, O. Kosut, and L. Sankar, “(α,β)𝛼𝛽(\alpha,\beta)( italic_α , italic_β )-leakage: A unified privacy leakage measure,” arXiv preprint arXiv:2304.07456, 2023.
  18. J. Liao, L. Sankar, O. Kosut, and F. P. Calmon, “Maximal α𝛼\alphaitalic_α-leakage and its properties,” in 2020 IEEE Conference on Communications and Network Security (CNS).   IEEE, 2020, pp. 1–6.
  19. T. Sypherd, M. Diaz, J. K. Cava, G. Dasarathy, P. Kairouz, and L. Sankar, “A tunable loss function for robust classification: Calibration, landscape, and generalization,” IEEE Transactions on Information Theory, vol. 68, no. 9, pp. 6021–6051, 2022.
  20. A. Kamatsuka, T. Yoshida, and T. Matsushima, “A generalization of the stratonovich’s value of information and application to privacy-utility trade-off,” in 2022 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2022, pp. 1999–2004.
  21. G. R. Kurri, L. Sankar, and O. Kosut, “An operational approach to information leakage via generalized gain functions,” IEEE Transactions on Information Theory, 2023.
  22. S. Saeidian, G. Cervia, T. J. Oechtering, and M. Skoglund, “Pointwise maximal leakage,” IEEE Transactions on Information Theory, vol. 69, no. 12, pp. 8054–8080, 2023.
  23. A. Zamani, T. J. Oechtering, and M. Skoglund, “Private variable-length coding with non-zero leakage,” arXiv preprint arXiv:2310.19122, 2023.
  24. ——, “New privacy mechanism design with direct access to the private data,” arXiv preprint arXiv:2309.09033, 2023.
  25. L. Zhou and M. Ying, “Differential privacy in quantum computation,” in 2017 IEEE 30th Computer Security Foundations Symposium (CSF).   IEEE, 2017, pp. 249–262.
  26. S. Aaronson and G. N. Rothblum, “Gentle measurement of quantum states and differential privacy,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019, pp. 322–333.
  27. W. M. Watkins, S. Y.-C. Chen, and S. Yoo, “Quantum machine learning with differential privacy,” Scientific Reports, vol. 13, no. 1, p. 2453, 2023.
  28. A. Angrisani, M. Doosti, and E. Kashefi, “Differential privacy amplification in quantum and quantum-inspired algorithms,” arXiv preprint arXiv:2203.03604, 2022.
  29. Y. Du, M.-H. Hsieh, T. Liu, S. You, and D. Tao, “Quantum differentially private sparse regression learning,” IEEE Transactions on Information Theory, vol. 68, no. 8, pp. 5217–5233, 2022.
  30. C. Hirche, C. Rouzé, and D. S. França, “Quantum differential privacy: An information theory perspective,” IEEE Transactions on Information Theory, 2023.
  31. T. Nuradha and Z. Goldfeld, “Pufferfish privacy: An information-theoretic study,” IEEE Transactions on Information Theory, 2023.
  32. F. Farokhi, “Maximal quantum information leakage,” arXiv preprint arXiv:2307.12529, 2023.
  33. J. L. Massey, “Guessing and entropy,” in Proceedings of 1994 IEEE International Symposium on Information Theory.   IEEE, 1994, p. 204.
  34. W. Chen, Y. Cao, H. Wang, and Y. Feng, “Minimum guesswork discrimination between quantum states,” arXiv preprint arXiv:1410.5180, 2014.
  35. E. P. Hanson, V. Katariya, N. Datta, and M. M. Wilde, “Guesswork with quantum side information,” IEEE Transactions on Information Theory, vol. 68, no. 1, pp. 322–338, 2021.
  36. A. M. GLEASON, “Measures on the closed subspaces of a hilbert space,” Journal of Mathematics and Mechanics, vol. 6, no. 6, pp. 885–893, 1957. [Online]. Available: http://www.jstor.org/stable/24900629
  37. M. Diaz, H. Wang, F. P. Calmon, and L. Sankar, “On the robustness of information-theoretic privacy measures and mechanisms,” IEEE Transactions on Information Theory, vol. 66, no. 4, pp. 1949–1978, 2019.
  38. R. König, R. Renner, and C. Schaffner, “The operational meaning of min-and max-entropy,” IEEE Transactions on Information theory, vol. 55, no. 9, pp. 4337–4347, 2009.
  39. M. Berta, O. Fawzi, and M. Tomamichel, “On variational expressions for quantum relative entropies,” Letters in Mathematical Physics, vol. 107, pp. 2239–2265, 2017.
  40. F. Hiai and M. Mosonyi, “Different quantum f𝑓fitalic_f-divergences and the reversibility of quantum operations,” Reviews in Mathematical Physics, vol. 29, no. 07, p. 1750023, 2017.
  41. A. Rényi, “On measures of entropy and information,” Proc. 4th Berkeley Symp. on Math. Statist. Probability, vol. 1, pp. 547–561, 1962.
  42. S. Beigi and M. Tomamichel, “Lower bounds on error exponents via a new quantum decoder,” arXiv preprint arXiv:2310.09014, 2023.
  43. S. Arimoto, “Information measures and capacity of order α𝛼\alphaitalic_α for discrete memoryless channels,” in Topics in Information Theory, Proc. Coll. Math. Soc. János Bolyai, 1975, pp. 41–52.
  44. M. Mosonyi and T. Ogawa, “Strong converse exponent for classical-quantum channel coding,” Communications in Mathematical Physics, vol. 355, pp. 373–426, 2017.
  45. M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, “On quantum rényi entropies: A new generalization and some properties,” Journal of Mathematical Physics, vol. 54, no. 12, Dec. 2013. [Online]. Available: http://dx.doi.org/10.1063/1.4838856
  46. M. M. Wilde, A. Winter, and D. Yang, “Strong converse for the classical capacity of entanglement-breaking and hadamard channels via a sandwiched rényi relative entropy,” Communications in Mathematical Physics, vol. 331, no. 2, p. 593–622, Jul. 2014. [Online]. Available: http://dx.doi.org/10.1007/s00220-014-2122-x
  47. S. Beigi, “Sandwiched rényi divergence satisfies data processing inequality,” Journal of Mathematical Physics, vol. 54, no. 12, 2013.
  48. H. Umegaki, “Conditional expectation in an operator algebra,” Tohoku Mathematical Journal, Second Series, vol. 6, no. 2-3, pp. 177–181, 1954.
  49. H.-C. Cheng, L. Gao, and M.-H. Hsieh, “Properties of noncommutative rényi and Augustin information,” Communications in Mathematical Physics, feb 2022.
  50. K. Li and Y. Yao, “Operational interpretation of the sandwiched r\\\backslash\’enyi divergences of order 1/2 to 1 as strong converse exponents,” arXiv preprint arXiv:2209.00554, 2022.
  51. M. Mosonyi and T. Ogawa, “Quantum hypothesis testing and the operational interpretation of the quantum rényi relative entropies,” Communications in Mathematical Physics, vol. 334, no. 3, p. 1617–1648, Dec. 2014. [Online]. Available: http://dx.doi.org/10.1007/s00220-014-2248-x
  52. C. A. Fuchs, “Distinguishability and accessible information in quantum theory,” arXiv preprint quant-ph/9601020, 1996.
  53. N. Datta, “Min- and max-relative entropies and a new entanglement monotone,” IEEE Transactions on Information Theory, vol. 55, no. 6, pp. 2816–2826, Jun 2009.
  54. S. Verdú, “α𝛼\alphaitalic_α-mutual information,” in 2015 Information Theory and Applications Workshop (ITA).   IEEE, feb 2015.
  55. H.-C. Cheng and L. Gao, “On strong converse theorems for quantum hypothesis testing and channel coding,” arXiv preprint quant-ph/2403.13584, 2024. [Online]. Available: https://arxiv.org/abs/2403.13584
  56. A. Kamatsuka, Y. Ishikawa, K. Kazama, and T. Yoshida, “New algorithms for computing sibson capacity and arimoto capacity,” arXiv preprint arXiv:2401.14241, 2024.
  57. P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem for differential privacy,” in International conference on machine learning.   PMLR, 2015, pp. 1376–1385.
  58. N. Datta, M.-H. Hsieh, M. M. Wilde, and A. Winter, “Quantum-to-classical rate distortion coding,” Journal of Mathematical Physics, vol. 54, no. 4, 2013.
  59. A. Agrawal and S. Boyd, “Disciplined quasiconvex programming,” Optimization Letters, vol. 14, pp. 1643–1657, 2020.
  60. J. Schindler and A. Winter, “Continuity bounds on observational entropy and measured relative entropies,” arXiv preprint arXiv:2302.00400, 2023.
  61. M. l Horodecki and P. l Horodecki, “Reduction criterion of separability and limits for a class of protocols of entanglement distillation,” arXiv preprint arXiv:9708015v3, 1999.
  62. F. Hiai and D. Petz, “The proper formula for relative entropy and its asymptotics in quantum probability,” Communications in mathematical physics, vol. 143, pp. 99–114, 1991.
  63. M. Hayashi and M. Tomamichel, “Correlation detection and an operational interpretation of the rényi mutual information,” Journal of Mathematical Physics, vol. 57, no. 10, Oct. 2016. [Online]. Available: http://dx.doi.org/10.1063/1.4964755
  64. C. M. Caves, C. A. Fuchs, and R. Schack, “Unknown quantum states: The quantum de finetti representation,” Journal of Mathematical Physics, vol. 43, no. 9, p. 4537–4559, Sep. 2002. [Online]. Available: http://dx.doi.org/10.1063/1.1494475
  65. S. Khatri and M. M. Wilde, “Principles of quantum communication theory: A modern approach,” 2021.
  66. M. K. Gupta and M. M. Wilde, “Multiplicativity of completely bounded p-norms implies a strong converse for entanglement-assisted capacity,” Communications in Mathematical Physics, vol. 334, pp. 867–887, 2015.
  67. A. W. Harrow, “Applications of coherent classical communication and the schur transform to quantum information theory,” arXiv preprint quant-ph/0512255, 2005.
  68. M. Berta, F. G. Brandao, and C. Hirche, “On composite quantum hypothesis testing,” Communications in Mathematical Physics, vol. 385, no. 1, pp. 55–77, 2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com