Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Kimi K2 160 tok/s Pro
2000 character limit reached

Non-Uniform Lattices of Large Systole Containing a Fixed 3-Manifold Group (2403.14081v3)

Published 21 Mar 2024 in math.GT

Abstract: Let $d$ be a square free positive integer and $\mathbb{Q}(\sqrt{d})$ a totally real quadratic field over $\mathbb{Q}$. We show there exists an arithmetic lattice L in $SL(8,\mathbb{R})$ with entries in the ring of integers of $\mathbb{Q}(\sqrt{d})$ and a sequence of lattices $\Gamma_n $ commensurable to L such that the systole of the locally symmetric finite volume manifold $\Gamma_n \diagdown SL(8,\mathbb{R}) \diagup SO(8)$ goes to infinity as $n \rightarrow \infty$, yet every $\Gamma_n$ contains the same hyperbolic 3-manifold group $\Pi$, a finite index subgroup of the arithmetic hyperbolic 3-manifold vol3. Notably, such an example does not exist in rank one, so this is a feature unique to higher rank lattices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)