Nonequilibrium quantum heat transport between structured environments (2403.13904v2)
Abstract: We apply the hierarchical equations of motion technique to analyzing nonequilibrium heat transport in a spin-boson type model, whereby heat transfer through a central spin is mediated by an intermediate pair of coupled harmonic oscillators. The coupling between each pair of oscillators is shown to introduce a localized gap into the effective spectral densities characterizing the system-oscillator-reservoir interactions. Compared to the case of a single mediating oscillator, we find the heat current to be drastically modified at weak system-bath coupling. In particular, a second-order treatment fails to capture the correct steady-state behavior in this regime, which stems from the $\lambda4$-scaling of the energy transfer rate to lowest order in the coupling strength $\lambda$. This leads naturally to a strong suppression in the steady-state current in the asymptotically weak coupling limit. On the other hand, the current noise follows the same scaling as in the single oscillator case in accordance with the fluctuation-dissipation theorem. Additionally, we find the heat current to be consistent with Fourier's law even at large temperature bias. Our analysis highlights a novel mechanism for controlling heat transport in nanoscale systems based on tailoring the spectral properties of thermal environments.
- Segal D and Nitzan A 2005 Phys. Rev. Lett. 94 034301
- Segal D and Nitzan A 2005 J. Chem. Phys. 122
- Ruokola T, Ojanen T and Jauho A P 2009 Phys. Rev. B 79 144306
- Newman D, Mintert F and Nazir A 2017 Phys. Rev. E 95 032139
- Wiedmann M, Stockburger J T and Ankerhold J 2020 New Journal of Physics 22 033007
- Latune C L, Pleasance G and Petruccione F 2023 Phys. Rev. Applied 20 024038
- Levy A and Kosloff R 2012 Phys. Rev. Lett. 108 070604
- Ivander F, Anto-Sztrikacs N and Segal D 2022 Phys. Rev. E 105 034112
- Dubi Y and Di Ventra M 2011 Rev. Mod. Phys. 83 131–155
- Pekola J P 2015 Nat. Phys. 11 118–123
- Landi G T, Poletti D and Schaller G 2022 Rev. Mod. Phys. 94 045006
- Segal D 2006 Phys. Rev. B 73 205415
- Segal D and Nitzan A 2006 Phys. Rev. E 73 026109
- Gilmore J and McKenzie R H 2005 J. Phys.: Condens. Matter 17 1735–1746
- Agarwalla B K and Segal D 2017 New J. Phys. 19 043030
- Simine L and Segal D 2013 J. Chem. Phys. 138 214111
- Aurell E 2018 Phys. Rev. E 97 062117
- Aurell E, Donvil B and Mallick K 2020 Phys. Rev. E 101 052116
- Anto-Sztrikacs N and Segal D 2021 New J. Phys. 23 063036
- Anto-Sztrikacs N, Ivander F and Segal D 2022 J. Chem. Phys. 156 214107
- Kato A and Tanimura Y 2015 J. Chem. Phys. 143 064107
- Kato A and Tanimura Y 2016 J. Chem. Phys. 145 224105
- Cerrillo J, Buser M and Brandes T 2016 Phys. Rev. B 94 214308
- Song L and Shi Q 2017 Phys. Rev. B 95 064308
- Chen R 2023 New J. Phys. 25 033035
- Breuer H P and Petruccione F 2002 The theory of open quantum systems (New York: Oxford University Press)
- Nicolin L and Segal D 2011 J. Chem. Phys. 135 164106
- Segal D 2014 Phys. Rev. E 90 012148
- Weiss U 2011 Quantum Dissipative Systems (World Scientific)
- Wang C, Ren J and Cao J 2015 Sci. Rep. 5 11787
- Wang C, Ren J and Cao J 2017 Phys. Rev. A 95 023610
- Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665–1702
- Palm T and Nalbach P 2018 J. Chem. Phys. 149 214103
- Aurell E and Tuziemski J 2021 The vernon transform and its use in quantum thermodynamics (Preprint 2103.13255)
- Yamamoto T and Kato T 2021 J. Phys.: Condens. Matter 33 395303
- Tanimura Y and Kubo R 1989 J. Phys. Soc. Japan. 58 101–114
- Tanimura Y 1990 Phys. Rev. A 41 6676–6687
- Ishizaki A and Tanimura Y 2005 J. Phys. Soc. Japan 74 3131–3134
- Tanimura Y 2006 J. Phys. Soc. Japan 75 082001
- Ishizaki A and Fleming G R 2009 J. Chem. Phys. 130 234111
- Tanimura Y 2020 J. Chem. Phys. 153 020901
- Caldeira A and Leggett A 1983 Physica A 121 587–616
- Feynman R and Vernon F 1963 Ann. Phys-new. York. 24 118–173
- Garg A, Onuchic J N and Ambegaokar V 1985 J. Chem. Phys. 83 4491–4503
- Iles-Smith J, Lambert N and Nazir A 2014 Phys. Rev. A 90 032114
- Esposito M, Lindenberg K and den Broeck C V 2010 New J. Phys. 12 013013
- Trushechkin A 2019 Lobachevskii J. Math. 40 1606–1618
- Redfield A 1965 The Theory of Relaxation Processes vol 1 Advances in Magnetic Resonance (Elsevier) pp 1–32
- Mitchison M T and Plenio M B 2018 New J. Phys. 20 033005
- Johansson J, Nation P and Nori F 2013 Comput. Phys. Commun. 184 1234–1240
- Ziman J M 1969 Elements of Advanced Quantum Theory (Cambridge: Cambridge University Press)
- Parr R G and Yang W 1989 Density-Functional Theory of Atoms and Molecules (New York: Oxford University Press)
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.