Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Quantum Chaos on Edge (2403.13516v1)

Published 20 Mar 2024 in hep-th, cond-mat.dis-nn, cond-mat.str-el, and quant-ph

Abstract: In recent years, the physics of many-body quantum chaotic systems close to their ground states has come under intensified scrutiny. Such studies are motivated by the emergence of model systems exhibiting chaotic fluctuations throughout the entire spectrum (the Sachdev-Ye-Kitaev (SYK) model being a renowned representative) as well as by the physics of holographic principles, which likewise unfold close to ground states. Interpreting the edge of the spectrum as a quantum critical point, here we combine a wide range of analytical and numerical methods to the identification and comprehensive description of two different universality classes: the near edge physics of sparse'' and the near edge ofdense'' chaotic systems. The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension, which is exponentially small or algebraically small in the sparse and dense case, respectively. Notable representatives of the two classes are generic chaotic many-body models (sparse) and single particle systems, invariant random matrix ensembles, or chaotic gravitational systems (dense). While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different. Considering the SYK model as a representative of the sparse class, we apply a combination of field theory and exact diagonalization to a detailed discussion of its edge spectrum. Conversely, Jackiw-Teitelboim gravity is our reference model for the dense class, where an analysis of the gravitational path integral and random matrix theory reveal universal differences to the sparse class, whose implications for the construction of holographic principles we discuss.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.