Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GKZ hypergeometric systems of the four-loop vacuum Feynman integrals (2403.13025v2)

Published 19 Mar 2024 in hep-ph and hep-th

Abstract: Basing on Mellin-Barnes representations and Miller's transformation, we present the Gel'fand-Kapranov-Zelevinsky (GKZ) hypergeometric systems of 4-loop vacuum Feynman integrals with arbitrary masses. Through the GKZ hypergeometric systems, the analytical hypergeometric solutions of 4-loop vacuum Feynman integrals with arbitrary masses can be obtained in neighborhoods of origin including infinity. The analytical expressions of Feynman integrals can be formulated as a linear combination of the fundamental solution systems in certain convergent region, which the combination coefficients can be determined by the integral at some regular singularities, the Mellin-Barnes representation of the integral, or some mathematical methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. G. Heinrich, Phys. Rept. 922 (2021) 1-69.
  2. A. Denner, Fortschr. Phys. 41 (1993) 307-420.
  3. D.J. Broadhurst, Z. Phys. C 54 (1992) 599.
  4. L.V. Avdeev, Comput. Phys. Commun. 98 (1996) 15.
  5. D.J. Broadhurst, Eur. Phys. J. C 8 (1999) 311.
  6. M.Y. Kalmykov, Nucl. Phys. B 718 (2005) 276.
  7. M.Y. Kalmykov, JHEP 04 (2006) 056.
  8. A. Freitas, JHEP 11 (2016) 145.
  9. S.P. Martin, Phys. Rev. D 96 (2017) 096005.
  10. S. Laporta, Phys. Lett. B 549 (2002) 115.
  11. Y. Schröder, Nucl. Phys. B (Proc. Suppl.) 116 (2003) 402-406.
  12. A.I. Davydychev, J. Math. Phys. 32 (1991) 1052.
  13. A.I. Davydychev, J. Phys. A 25 (1992) 5587.
  14. A.I. Davydychev, J. Math. Phys. 33 (1992) 358.
  15. V.A. Smirnov, Phys. Lett. B 460 (1999) 397-404.
  16. J.B. Tausk, Phys. Lett. B 469 (1999) 225-234.
  17. A.I. Davydychev, Phys. Rev. D 61 (2000) 087701.
  18. A.I. Davydychev, Nucl. Instrum. Meth. A 559 (2006) 293.
  19. E. Nasrollahpoursamami, arXiv:1605.04970 [math-ph].
  20. I.M. Gel’fand, Soviet Math. Dokl. 33 (1986) 573.
  21. L. Cruz, JHEP 12 (2019) 123.
  22. R. Klausen, JHEP 04 (2020) 121.
  23. T. Oaku, Adv. Appl. Math. 19 (1997) 61.
  24. U. Walther, J. Pure Appl. Algebra 139 (1999) 303.
  25. W. Miller Jr., J. Math. Mech. 17 (1968) 1143.
  26. W. Miller Jr., SIAM. J. Math. Anal. 3 (1972) 31.
  27. M. Hidding, Comput. Phys. Commun. 269 (2021) 108125.
  28. M. Borinsky, Ann. Inst. H. Poincare Comb. Phys. Interact. 10 (2023) 635-685.
  29. R.P. Klausen, JHEP 02 (2022) 004.
  30. U. Walther, Lett. Math. Phys. 112 (2022) 120.
  31. H. J. Munch, PoS LL2022 (2022) 042.
  32. R. P. Klausen, arXiv:2302.13184 [hep-th].
  33. H. J. Munch, arXiv:2401.00891 [hep-th].
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com