Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rate-optimal higher-order adaptive conforming FEM for biharmonic eigenvalue problems on polygonal domains (2403.12577v1)

Published 19 Mar 2024 in math.NA and cs.NA

Abstract: The a posteriori error analysis of the classical Argyris finite element methods dates back to 1996, while the optimal convergence rates of associated adaptive finite element schemes are established only very recently in 2021. It took a long time to realise the necessity of an extension of the classical finite element spaces to make them hierarchical. This paper establishes the novel adaptive schemes for the biharmonic eigenvalue problems and provides a mathematical proof of optimal convergence rates towards a simple eigenvalue and numerical evidence thereof. This makes the suggested algorithm highly competitive and clearly justifies the higher computational and implementational costs compared to low-order nonconforming schemes. The numerical experiments provide overwhelming evidence that higher polynomial degrees pay off with higher convergence rates and underline that adaptive mesh-refining is mandatory. Five computational benchmarks display accurate reference eigenvalues up to 30 digits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. The TUBA Family of Plate Elements for the Matrix Displacement Method. Aeronaut. J., (692):701–709, 1968.
  2. M. Ainsworth and C. Parker. Preconditioning high order $$H^2$$ conforming finite elements on triangles. Numer. Math., (2):223–254, 2021.
  3. S. C. Brenner and C. Carstensen. Finite Element Methods. In Encyclopedia of Computational Mechanics Second Edition, pages 1–47. John Wiley & Sons, Ltd, Chichester, UK, 2017.
  4. Some planar isospectral domains. Internat. Math. Res. Notices, (9):391, 1994.
  5. Adaptive Finite Element Methods with convergence rates. Numer. Math., (2):219–268, 2004.
  6. K. Bell. Analysis of Thin Plates in Bending Using Triangular Finite Elements. Division of Structural Mechanics, Techn. University of Norway, 1968.
  7. K. Bell. A refined triangular plate bending finite element. Int. J. Numer. Meth. Engng., (1):101–122, 1969.
  8. I. Babuška and J. Osborn. Eigenvalue problems. In Handbook of Numerical Analysis, pages 641–787. Elsevier, 1991.
  9. D. Boffi. Finite element approximation of eigenvalue problems. Acta Numerica, pages 1–120, 2010.
  10. W. Bosshard. Ein neues, vollverträgliches endliches Element für Plattenbiegung. Int. Ver. Für Brückenbau Hochbau Abh., (1), 1968.
  11. D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory. Cambridge University Press, Cambridge, 3 edition, 2007.
  12. H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer New York, New York, NY, 2011.
  13. C00{}^{0}start_FLOATSUPERSCRIPT 0 end_FLOATSUPERSCRIPT interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J Sci Comput, (1-3):83–118, 2005.
  14. The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer New York, New York, NY, 2008.
  15. High Precision Solutions of Two Fourth Order Eigenvalue Problems. Computing, (2):97–107, 1999.
  16. P. Buser. Isospectral riemann surfaces. Ann. Inst. Fourier, (2):167–192, 1986.
  17. J. H. Bramble and X. Zhang. Multigrid methods for the biharmonic problem discretized by conforming C1 finite elements on nonnested meshes. Numerical Functional Analysis and Optimization, (7-8):835–846, 1995.
  18. Axioms of adaptivity. Comput. Math. Appl., (6):1195–1253, 2014.
  19. C. Carstensen and J. Gedicke. An oscillation-free adaptive FEM for symmetric eigenvalue problems. Numer. Math., (3):401–427, 2011.
  20. C. Carstensen and B. Gräßle. [Manuscript in preparation]. 2024.
  21. A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes. Comput. Math. Appl., (12):2167–2181, 2014.
  22. C. Carstensen and J. Hu. Hierarchical Argyris Finite Element Method for Adaptive and Multigrid Algorithms. Comput. Methods Appl. Math., (3):529–556, 2021.
  23. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 2002.
  24. Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal., (5):2524–2550, 2008.
  25. C. Carstensen and H. Rabus. Axioms of Adaptivity with Separate Marking for Data Resolution. SIAM J. Numer. Anal., (6):2644–2665, 2017.
  26. Understanding the eigenstructure of various triangles. SIAM Undergrad. Res. Online, 2010.
  27. T. A. Driscoll. Eigenmodes of Isospectral Drums. SIAM Rev., (1):1–17, 1997.
  28. A. Ern and J.-L. Guermond. Finite element quasi-interpolation and best approximation. ESAIM: M2AN, (4):1367–1385, 2017.
  29. D. Gallistl. Adaptive Finite Element Computation of Eigenvalues. PhD thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät. https://edoc.hu-berlin.de/handle/18452/17654, 2014.
  30. D. Gallistl. An optimal adaptive FEM for eigenvalue clusters. Numer. Math., (3):467–496, 2015.
  31. A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems. SIAM J. Matrix Anal. & Appl., (1):228–272, 1994.
  32. B. Gräßle. Optimal multilevel adaptive FEM for the Argyris element. Comput. Methods Appl. Mech. Eng., page 115352, 2022.
  33. P. Grisvard. Elliptic Problems in Nonsmooth Domains. Society for Industrial and Applied Mathematics, 1985.
  34. P. Grisvard. Singularities in Boundary Value Problems. Number 22 in Research Notes in Applied Mathematics. Masson, Paris, 1992.
  35. One cannot hear the shape of a drum. Bull. Amer. Math. Soc., (1):134–138, 1992.
  36. Convergence and optimality of the adaptive Morley element method. Numer. Math., (4):731–752, 2012.
  37. M. Kac. Can One Hear the Shape of a Drum? The American Mathematical Monthly, (4):1, 1966.
  38. Optimal estimation for the Fujino–Morley interpolation error constants. Japan J. Indust. Appl. Math., (2):521–542, 2019.
  39. L. S. D. Morley. The triangular equilibrium element in the solution of plate bending problems. Aeronaut. Q., (2):149–169, 1968.
  40. W. Rudin. Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, New York, 2nd ed edition, 1991.
  41. D. S. Scott. The Advantages of Inverted Operators in Rayleigh–Ritz Approximations. SIAM J. Sci. and Stat. Comput., (1):68–75, 1982.
  42. G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs, N.J, 1973.
  43. R. Stevenson. The completion of locally refined simplicial partitions created by bisection. Math. Comp., (261):227–241, 2008.
  44. R. Verfürth. A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series, Advances in Numerical Mathematics. Wiley-Teubner, Chichester ; New York, 1996.
  45. W. Visser. The Finite Element Method in Deformation and Heat Conduction Problems. PhD thesis, Delft University of Technology, 1968.
  46. C. Wieners. Bounds for the N lowest eigenvalues of fourth-order boundary value problems. Computing, (1):29–41, 1997.
  47. D. Withum. Berechnung von Platten Nach Dem Ritzschen Verfahren Mit Hilfe Dreieckförmiger Maschennetze. Techn. Hochschule, Inst. f. Statik, 1966.
  48. K. Yosida. Functional Analysis. Classics in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1995.
  49. E. Zeidler. Nonlinear Functional Analysis and Its Applications. 1: Fixed-point Theorems. Springer, New York, softcover reprint of the hardcover 1st edition 1986, second corrected printing edition, 1992.
  50. D. K. Zhang. MultiFloats.jl. https://github.com/dzhang314/MultiFloats.jl, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.