Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Vacuum Rabi splitting as a manifestation of virtual two-mode squeezing: Extracting the squeezing parameters from frequency shifts (2403.12177v1)

Published 18 Mar 2024 in quant-ph

Abstract: Vacuum Rabi splitting relies on symmetrical splitting of the common resonance frequency of atoms and the cavity in which the atoms reside. In this work, we argue that vacuum Rabi splitting is a manifestation of virtual light-matter two-mode squeezing. We establish a connection between squeezing parameters of virtual excitations and frequency shifts of the physical modes. To this end, we use the mapping between the Dicke model and two interacting harmonic oscillators, which we analyze in the framework of bare and physical modes. Finally, we suggest that such virtual squeezing of quantum fields might also play a role in quantum field theories.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. A. G. J. MacFarlane, J. P. Dowling, and G. J. Milburn, Quantum technology: the second quantum revolution, Philos. Trans. Royal Soc. A 361, 1655 (2003).
  2. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1999).
  3. I. A. Walmsley, Quantum optics: Science and technology in a new light, Science 348, 525 (2015).
  4. W. Greiner and J. Reinhardt, Quantum Electrodynamics (Springer Berlin Heidelberg, 2013).
  5. W. E. Lamb and R. C. Retherford, Fine Structure of the Hydrogen Atom by a Microwave Method, Phys. Rev. 72, 241 (1947).
  6. J. Schwinger, On quantum-electrodynamics and the magnetic moment of the electron, Phys. Rev. 73, 416 (1948).
  7. T. Y. Cao, Conceptual Foundations of Quantum Field Theory (Cambridge University Press, 2004).
  8. C. Ciuti, G. Bastard, and I. Carusotto, Quantum vacuum properties of the intersubband cavity polariton field, Phys. Rev. B 72, 115303 (2005).
  9. R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).
  10. S. D. Liberato, C. Ciuti, and I. Carusotto, Quantum Vacuum Radiation Spectra from a Semiconductor Microcavity with a Time-Modulated Vacuum Rabi Frequency, Phys. Rev. Lett. 98, 103602 (2007).
  11. I. I. Rabi, Space Quantization in a Gyrating Magnetic Field, Phys. Rev. 51, 652 (1937).
  12. J. Larson and T. Mavrogordatos, The Jaynes–Cummings Model and Its Descendants, 2053-2563 (IOP Publishing, 2021).
  13. J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, Theory of Spontaneous-Emission Line Shape in an Ideal Cavity, Phys. Rev. Lett. 51, 550 (1983).
  14. G. S. Agarwal, Vacuum-Field Rabi Splittings in Microwave Absorption by Rydberg Atoms in a Cavity, Phys. Rev. Lett. 53, 1732 (1984).
  15. R. J. Thompson, G. Rempe, and H. J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity, Phys. Rev. Lett. 68, 1132 (1992).
  16. R. Graham, Squeezing and frequency changes in harmonic oscillations, J. Mod. Opt. 34, 873 (1987).
  17. C. F. Lo, Squeezing by tuning the oscillator frequency, J. Phys. A Math. Gen. 23, 1155 (1990).
  18. B. M. Garraway, The Dicke model in quantum optics: Dicke model revisited, Philos. Trans. R. Soc. A 369, 1137 (2011a).
  19. K. Hepp and E. H. Lieb, On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model, Ann. Phys. 76, 360 (1973).
  20. Y. K. Wang and F. T. Hioe, Phase Transition in the Dicke Model of Superradiance, Phys. Rev. A 7, 831 (1973).
  21. I. Bialynicki-Birula and K. Rza¸żewski, No-go theorem concerning the superradiant phase transition in atomic systems, Phys. Rev. A 19, 301 (1979).
  22. C. Emary and T. Brandes, Chaos and the quantum phase transition in the Dicke model, Phys. Rev. E 67, 066203 (2003).
  23. O. Viehmann, J. von Delft, and F. Marquardt, Superradiant Phase Transitions and the Standard Description of Circuit QED, Phys. Rev. Lett. 107, 113602 (2011).
  24. L. Bakemeier, A. Alvermann, and H. Fehske, Quantum phase transition in the Dicke model with critical and noncritical entanglement, Phys. Rev. A 85, 043821 (2012).
  25. M.-J. Hwang, R. Puebla, and M. B. Plenio, Quantum Phase Transition and Universal Dynamics in the Rabi Model, Phys. Rev. Lett. 115, 180404 (2015).
  26. J. Larson and E. K. Irish, Some remarks on ‘superradiant’ phase transitions in light-matter systems, J. Phys. A Math. Theor. 50, 174002 (2017).
  27. F. Mivehvar, Conventional and unconventional dicke models: Multistabilities and nonequilibrium dynamics, Phys. Rev. Lett. 132, 073602 (2024).
  28. T. Holstein and H. Primakoff, Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet, Phys. Rev. 58, 1098 (1940).
  29. B. L. Schumaker and C. M. Caves, New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation, Phys. Rev. A 31, 3093 (1985).
  30. C. Ciuti and I. Carusotto, Input-output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters, Phys. Rev. A 74, 033811 (2006).
  31. T. D. Farokh Mivehvar, Francesco Piazza and H. Ritsch, Cavity qed with quantum gases: new paradigms in many-body physics, Advances in Physics 70, 1 (2021).
  32. F. Beaudoin, J. M. Gambetta, and A. Blais, Dissipation and ultrastrong coupling in circuit QED, Phys. Rev. A 84, 043832 (2011).
  33. M.-J. Hwang, P. Rabl, and M. B. Plenio, Dissipative phase transition in the open quantum Rabi model, Phys. Rev. A 97, 013825 (2018).
  34. K. Gietka, C. Hotter, and H. Ritsch, Unique steady-state squeezing in a driven quantum rabi model, Phys. Rev. Lett. 131, 223604 (2023).
  35. N. Lambert, C. Emary, and T. Brandes, Entanglement and the phase transition in single-mode superradiance, Phys. Rev. Lett. 92, 073602 (2004).
  36. B. M. Garraway, The dicke model in quantum optics: Dicke model revisited, Philos. Trans. R. Soc. A 369, 1137 (2011b).
  37. D. S. Shapiro, W. V. Pogosov, and Y. E. Lozovik, Universal fluctuations and squeezing in a generalized dicke model near the superradiant phase transition, Phys. Rev. A 102, 023703 (2020).
  38. P. Domokos and H. Ritsch, Collective Cooling and Self-Organization of Atoms in a Cavity, Phys. Rev. Lett. 89, 253003 (2002).
  39. S. Sachdev, Quantum phase transitions, Phys. World 12, 33 (1999).
  40. M. Vojta, Quantum phase transitions, Rep. Prog. Phys. 66, 2069 (2003).
  41. A. Mazumdar and G. White, Review of cosmic phase transitions: their significance and experimental signatures, Rep. Prog. Phys. 82, 076901 (2019).
  42. K. Gietka, Squeezing by critical speeding up: Applications in quantum metrology, Phys. Rev. A 105, 042620 (2022).
  43. S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, 2011).
  44. A. del Campo and W. H. Zurek, Universality of phase transition dynamics: Topological defects from symmetry breaking, Int. J. Mod. Phys. A 29, 1430018 (2014).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com