Hairy Black Holes with Arbitrary Small Areas (2403.11770v1)
Abstract: We obtained new hairy black hole solutions in Einstein-scalar theory, including asymptotic flat, de Sitter and anti-de Sitter black holes. The theory is inspired by Ref. [1], where traversable wormhole solutions from an Einstein-phantom scalar theory are constructed. In this work, we found new black hole solutions in an Einstein-normal scalar theory. Comparing with Schwarzschild metric, the hairy black holes have two interesting properties: i) the areas of the black holes are always smaller than the same mass Schwarzschild black holes; ii) A naked singularity with positive mass arises when the black hole mass decreases. The energy conditions for the black holes and naked singularities are checked. We found that, as hairy black holes, the null energy condition(NEC) and the strong energy condition(SEC) are hold, while the weak energy condition(WEC) is violated in the vicinity of black hole horizon. The naked singularity respects to all three energy conditions. We also investigate the quasinormal modes(QNMs) of the hairy black holes by a test scalar field. The results indicate that one can distinguish hairy black holes with the same mass Schwarzschilid black hole by their QNM spectra.
- H. Huang, H. Lü and J. Yang, “Bronnikov-like wormholes in Einstein-scalar gravity,” Class. Quant. Grav. 39, no.18, 185009 (2022) doi:10.1088/1361-6382/ac8266 [arXiv:2010.00197 [gr-qc]].
- H. Luck, “The GEO-600 project,” Class. Quant. Grav. 14, 1471-1476 (1997) doi:10.1088/0264-9381/14/6/012
- E. Berti, V. Cardoso and C. M. Will, “On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA,” Phys. Rev. D 73, 064030 (2006) doi:10.1103/PhysRevD.73.064030 [arXiv:gr-qc/0512160 [gr-qc]].
- K. Somiya [KAGRA], “Detector configuration of KAGRA: The Japanese cryogenic gravitational-wave detector,” Class. Quant. Grav. 29, 124007 (2012) doi:10.1088/0264-9381/29/12/124007 [arXiv:1111.7185 [gr-qc]].
- W. R. Hu and Y. L. Wu, “The Taiji Program in Space for gravitational wave physics and the nature of gravity,” Natl. Sci. Rev. 4, no.5, 685-686 (2017) doi:10.1093/nsr/nwx116
- W. H. Ruan, C. Liu, Z. K. Guo, Y. L. Wu and R. G. Cai, “The LISA-Taiji network,” Nature Astron. 4, 108-109 (2020) doi:10.1038/s41550-019-1008-4 [arXiv:2002.03603 [gr-qc]].
- S. J. Huang, Y. M. Hu, V. Korol, P. C. Li, Z. C. Liang, Y. Lu, H. T. Wang, S. Yu and J. Mei, “Science with the TianQin Observatory: Preliminary results on Galactic double white dwarf binaries,” Phys. Rev. D 102, no.6, 063021 (2020) doi:10.1103/PhysRevD.102.063021 [arXiv:2005.07889 [astro-ph.HE]].
- W. Israel, “Event horizons in static vacuum space-times,” Phys. Rev. 164, 1776-1779 (1967) doi:10.1103/PhysRev.164.1776
- D. C. Robinson, “Uniqueness of the Kerr black hole,” Phys. Rev. Lett. 34, 905-906 (1975) doi:10.1103/PhysRevLett.34.905
- J. D. Bekenstein, “Black hole hair: 25 - years after,” [arXiv:gr-qc/9605059 [gr-qc]].
- V. Cardoso and L. Gualtieri, “Testing the black hole ‘no-hair’ hypothesis,” Class. Quant. Grav. 33, no.17, 174001 (2016) doi:10.1088/0264-9381/33/17/174001 [arXiv:1607.03133 [gr-qc]].
- J. Yang, “Novel topological black holes from thermodynamics and deforming horizons,” [arXiv:2301.01709 [gr-qc]].
- P. V. P. Cunha, C. A. R. Herdeiro, E. Radu and H. F. Runarsson, “Shadows of Kerr black holes with scalar hair,” Phys. Rev. Lett. 115, no.21, 211102 (2015) doi:10.1103/PhysRevLett.115.211102 [arXiv:1509.00021 [gr-qc]].
- M. Khodadi, A. Allahyari, S. Vagnozzi and D. F. Mota, “Black holes with scalar hair in light of the Event Horizon Telescope,” JCAP 09, 026 (2020) doi:10.1088/1475-7516/2020/09/026 [arXiv:2005.05992 [gr-qc]].
- M. Afrin, R. Kumar and S. G. Ghosh, “Parameter estimation of hairy Kerr black holes from its shadow and constraints from M87*,” Mon. Not. Roy. Astron. Soc. 504, 5927-5940 (2021) doi:10.1093/mnras/stab1260 [arXiv:2103.11417 [gr-qc]].
- M. Khodadi, G. Lambiase and D. F. Mota, “No-hair theorem in the wake of Event Horizon Telescope,” JCAP 09, 028 (2021) doi:10.1088/1475-7516/2021/09/028 [arXiv:2107.00834 [gr-qc]].
- S. Li, W. B. Han and S. C. Yang, “Tests of no-hair theorem with binary black-hole coalescences,” [arXiv:2312.02841 [gr-qc]].
- S. Gossan, J. Veitch and B. S. Sathyaprakash, “Bayesian model selection for testing the no-hair theorem with black hole ringdowns,” Phys. Rev. D 85, 124056 (2012) doi:10.1103/PhysRevD.85.124056 [arXiv:1111.5819 [gr-qc]].
- L. Sampson, N. Yunes, N. Cornish, M. Ponce, E. Barausse, A. Klein, C. Palenzuela and L. Lehner, “Projected Constraints on Scalarization with Gravitational Waves from Neutron Star Binaries,” Phys. Rev. D 90, no.12, 124091 (2014) doi:10.1103/PhysRevD.90.124091 [arXiv:1407.7038 [gr-qc]].
- M. Isi, M. Giesler, W. M. Farr, M. A. Scheel and S. A. Teukolsky, “Testing the no-hair theorem with GW150914,” Phys. Rev. Lett. 123, no.11, 111102 (2019) doi:10.1103/PhysRevLett.123.111102 [arXiv:1905.00869 [gr-qc]].
- S. Bhagwat, X. J. Forteza, P. Pani and V. Ferrari, “Ringdown overtones, black hole spectroscopy, and no-hair theorem tests,” Phys. Rev. D 101, no.4, 044033 (2020) doi:10.1103/PhysRevD.101.044033 [arXiv:1910.08708 [gr-qc]].
- J. D. Bekenstein, “Black Holes with Scalar Charge,” Annals Phys. 91, 75-82 (1975) doi:10.1016/0003-4916(75)90279-1
- P. Bizon, “Gravitating solitons and hairy black holes,” Acta Phys. Polon. B 25, 877-898 (1994) [arXiv:gr-qc/9402016 [gr-qc]].
- U. Nucamendi and M. Salgado, “Scalar hairy black holes and solitons in asymptotically flat space-times,” Phys. Rev. D 68, 044026 (2003) doi:10.1103/PhysRevD.68.044026 [arXiv:gr-qc/0301062 [gr-qc]].
- M. S. Volkov and D. V. Gal’tsov, “Gravitating nonAbelian solitons and black holes with Yang-Mills fields,” Phys. Rept. 319, 1-83 (1999) doi:10.1016/S0370-1573(99)00010-1 [arXiv:hep-th/9810070 [hep-th]].
- E. Radu, Y. Shnir and D. H. Tchrakian, “Scalar hairy black holes and solitons in a gravitating Goldstone model,” Phys. Lett. B 703, 386-393 (2011) doi:10.1016/j.physletb.2011.08.032 [arXiv:1106.5066 [gr-qc]].
- A. Anabalon, D. Astefanesei and R. Mann, “Exact asymptotically flat charged hairy black holes with a dilaton potential,” JHEP 10, 184 (2013) doi:10.1007/JHEP10(2013)184 [arXiv:1308.1693 [hep-th]].
- X. H. Feng, H. Lu and Q. Wen, “Scalar Hairy Black Holes in General Dimensions,” Phys. Rev. D 89, no.4, 044014 (2014) doi:10.1103/PhysRevD.89.044014 [arXiv:1312.5374 [hep-th]].
- C. A. R. Herdeiro and E. Radu, “Kerr black holes with scalar hair,” Phys. Rev. Lett. 112, 221101 (2014) doi:10.1103/PhysRevLett.112.221101 [arXiv:1403.2757 [gr-qc]].
- T. P. Sotiriou and S. Y. Zhou, “Black hole hair in generalized scalar-tensor gravity: An explicit example,” Phys. Rev. D 90, 124063 (2014) doi:10.1103/PhysRevD.90.124063 [arXiv:1408.1698 [gr-qc]].
- Z. Y. Fan and H. Lu, “Charged Black Holes with Scalar Hair,” JHEP 09, 060 (2015) doi:10.1007/JHEP09(2015)060 [arXiv:1507.04369 [hep-th]].
- C. Herdeiro and E. Radu, “Construction and physical properties of Kerr black holes with scalar hair,” Class. Quant. Grav. 32, no.14, 144001 (2015) doi:10.1088/0264-9381/32/14/144001 [arXiv:1501.04319 [gr-qc]].
- H. Luckock and I. Moss, “BLACK HOLES HAVE SKYRMION HAIR,” Phys. Lett. B 176, 341-345 (1986) doi:10.1016/0370-2693(86)90175-9
- B. Kleihaus, J. Kunz and A. Sood, “Charged SU(N) Einstein Yang-Mills black holes,” Phys. Lett. B 418, 284-293 (1998) doi:10.1016/S0370-2693(97)01447-0 [arXiv:hep-th/9705179 [hep-th]].
- B. Kleihaus, J. Kunz, A. Sood and M. Wirschins, “Black holes with Yang-Mills hair,” AIP Conf. Proc. 453, no.1, 478 (1998) doi:10.1063/1.57143 [arXiv:gr-qc/9807035 [gr-qc]].
- B. Hartmann, B. Kleihaus and J. Kunz, “Axially symmetric monopoles and black holes in Einstein-Yang-Mills-Higgs theory,” Phys. Rev. D 65, 024027 (2002) doi:10.1103/PhysRevD.65.024027 [arXiv:hep-th/0108129 [hep-th]].
- B. Kleihaus, J. Kunz and F. Navarro-Lerida, “Rotating Einstein-Yang-Mills black holes,” Phys. Rev. D 66, 104001 (2002) doi:10.1103/PhysRevD.66.104001 [arXiv:gr-qc/0207042 [gr-qc]].
- R. Ibadov, B. Kleihaus, J. Kunz and M. Wirschins, “New black hole solutions with axial symmetry in Einstein-Yang-Mills theory,” Phys. Lett. B 627, 180-187 (2005) doi:10.1016/j.physletb.2005.08.108 [arXiv:gr-qc/0507110 [gr-qc]].
- R. Brito, V. Cardoso and P. Pani, “Black holes with massive graviton hair,” Phys. Rev. D 88, 064006 (2013) doi:10.1103/PhysRevD.88.064006 [arXiv:1309.0818 [gr-qc]].
- C. Herdeiro, E. Radu and H. Rúnarsson, “Kerr black holes with Proca hair,” Class. Quant. Grav. 33, no.15, 154001 (2016) doi:10.1088/0264-9381/33/15/154001 [arXiv:1603.02687 [gr-qc]].
- Z. Y. Fan, “Black holes with vector hair,” JHEP 09, 039 (2016) doi:10.1007/JHEP09(2016)039 [arXiv:1606.00684 [hep-th]].
- Y. Shnir, “Black holes with Skyrmion-anti-Skyrmion hairs,” Phys. Lett. B 810, 135847 (2020) doi:10.1016/j.physletb.2020.135847 [arXiv:2008.09452 [hep-th]].
- T. Tamaki, K. i. Maeda and M. Inada, “Properties of black hole solutions in the SU(3) Einstein-Yang-Mills dilaton system,” Phys. Rev. D 63, 087504 (2001) doi:10.1103/PhysRevD.63.087504
- H. Lu, C. N. Pope and Q. Wen, “Thermodynamics of AdS Black Holes in Einstein-Scalar Gravity,” JHEP 03, 165 (2015) doi:10.1007/JHEP03(2015)165 [arXiv:1408.1514 [hep-th]].
- Z. Y. Fan, B. Chen and H. Lu, “Global Structure of Exact Scalar Hairy Dynamical Black Holes,” JHEP 05, 170 (2016) doi:10.1007/JHEP05(2016)170 [arXiv:1601.07246 [hep-th]].
- Y. Guo and Y. G. Miao, “Scalar quasinormal modes of black holes in Einstein-Yang-Mills gravity,” Phys. Rev. D 102, no.6, 064049 (2020) doi:10.1103/PhysRevD.102.064049 [arXiv:2005.07524 [hep-th]].
- D. J. Gogoi and S. Ponglertsakul, “Constraints on Quasinormal modes from Black Hole Shadows in regular non-minimal Einstein Yang-Mills Gravity,” [arXiv:2402.06186 [gr-qc]].
- R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, “Effective Lagrangian for a light Higgs-like scalar,” JHEP 07, 035 (2013) doi:10.1007/JHEP07(2013)035 [arXiv:1303.3876 [hep-ph]].
- J. Preskill, M. B. Wise and F. Wilczek, “Cosmology of the Invisible Axion,” Phys. Lett. B 120, 127-132 (1983) doi:10.1016/0370-2693(83)90637-8
- J. L. Feng, “Dark Matter Candidates from Particle Physics and Methods of Detection,” Ann. Rev. Astron. Astrophys. 48, 495-545 (2010) doi:10.1146/annurev-astro-082708-101659 [arXiv:1003.0904 [astro-ph.CO]].
- G. Ballesteros, J. Redondo, A. Ringwald and C. Tamarit, “Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism,” Phys. Rev. Lett. 118, no.7, 071802 (2017) doi:10.1103/PhysRevLett.118.071802 [arXiv:1608.05414 [hep-ph]].
- L. Hui, J. P. Ostriker, S. Tremaine and E. Witten, “Ultralight scalars as cosmological dark matter,” Phys. Rev. D 95, no.4, 043541 (2017) doi:10.1103/PhysRevD.95.043541 [arXiv:1610.08297 [astro-ph.CO]].
- E. J. Copeland, M. Sami and S. Tsujikawa, “Dynamics of dark energy,” Int. J. Mod. Phys. D 15, 1753-1936 (2006) doi:10.1142/S021827180600942X [arXiv:hep-th/0603057 [hep-th]].
- M. Li, X.-D. Li, S. Wang and Y. Wang, “Dark Energy,” Commun. Theor. Phys. 56, 525–604 (2011) doi:10.1088/0253-6102/56/3/24 [arXiv:1103.5870 [astro-ph.CO]].
- L. Kofman, A. D. Linde and A. A. Starobinsky, “Reheating after inflation,” Phys. Rev. Lett. 73, 3195-3198 (1994) doi:10.1103/PhysRevLett.73.3195 [arXiv:hep-th/9405187 [hep-th]].
- J. Martin, C. Ringeval and V. Vennin, “Encyclopædia Inflationaris” Phys. Dark Univ. 5-6, 75–235, (2014) doi:10.1016/j.dark.2014.01.003 [arXiv:1303.3787 [astro-ph.CO]].
- P. Svrcek and E. Witten, “Axions In String Theory,” JHEP 06, 051 (2006) doi:10.1088/1126-6708/2006/06/051 [arXiv:hep-th/0605206 [hep-th]].
- A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, “String Axiverse,” Phys. Rev. D 81, 123530 (2010) doi:10.1103/PhysRevD.81.123530 [arXiv:0905.4720 [hep-th]].
- E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67, 1900037 (2019) doi:10.1002/prop.201900037 [arXiv:1903.06239 [hep-th]].
- J. D. Bekenstein, “Transcendence of the law of baryon-number conservation in black hole physics,” Phys. Rev. Lett. 28, 452-455 (1972) doi:10.1103/PhysRevLett.28.452
- J. D. Bekenstein, “Nonexistence of baryon number for static black holes,” Phys. Rev. D 5, 1239-1246 (1972) doi:10.1103/PhysRevD.5.1239
- J. D. Bekenstein, “Nonexistence of baryon number for black holes. ii,” Phys. Rev. D 5, 2403-2412 (1972) doi:10.1103/PhysRevD.5.2403
- J. D. Bekenstein, “Novel “no-scalar-hair” theorem for black holes,” Phys. Rev. D 51, no.12, R6608 (1995) doi:10.1103/PhysRevD.51.R6608
- C. A. R. Herdeiro and E. Radu, “Asymptotically flat black holes with scalar hair: a review,” Int. J. Mod. Phys. D 24, no.09, 1542014 (2015) doi:10.1142/S0218271815420146 [arXiv:1504.08209 [gr-qc]].
- B. Kleihaus, J. Kunz and S. Yazadjiev, “Scalarized Hairy Black Holes,” Phys. Lett. B 744, 406-412 (2015) doi:10.1016/j.physletb.2015.04.014 [arXiv:1503.01672 [gr-qc]].
- J. L. Blázquez-Salcedo, D. D. Doneva, J. Kunz and S. S. Yazadjiev, “Radial perturbations of the scalarized Einstein-Gauss-Bonnet black holes,” Phys. Rev. D 98, no.8, 084011 (2018) doi:10.1103/PhysRevD.98.084011 [arXiv:1805.05755 [gr-qc]].
- E. Berti, L. G. Collodel, B. Kleihaus and J. Kunz, “Spin-induced black-hole scalarization in Einstein-scalar-Gauss-Bonnet theory,” Phys. Rev. Lett. 126, no.1, 011104 (2021) doi:10.1103/PhysRevLett.126.011104 [arXiv:2009.03905 [gr-qc]].
- M. Y. Lai, Y. S. Myung, R. H. Yue and D. C. Zou, “Spin-induced scalarization of Kerr-Newman black holes in Einstein-Maxwell-scalar theory,” Phys. Rev. D 106, no.4, 044045 (2022) doi:10.1103/PhysRevD.106.044045 [arXiv:2206.11587 [gr-qc]].
- M. Y. Lai, Y. S. Myung, R. H. Yue and D. C. Zou, “Spin-charge induced spontaneous scalarization of Kerr-Newman black holes,” Phys. Rev. D 106, no.8, 084043 (2022) doi:10.1103/PhysRevD.106.084043 [arXiv:2208.11849 [gr-qc]].
- K. H. Fan, Y. S. Myung, D. C. Zou and M. Y. Lai, “Scalarization of Kerr-Newman black holes in the Einstein-Chern-Simons-scalar theory,” [arXiv:2401.00144 [gr-qc]].
- R. Penrose, “Gravitational collapse and space-time singularities,” Phys. Rev. Lett. 14, 57-59 (1965) doi:10.1103/PhysRevLett.14.57
- R. Penrose, “Gravitational collapse: The role of general relativity,” Riv. Nuovo Cim. 1, 252-276 (1969) doi:10.1023/A:1016578408204
- S. W. Hawking and R. Penrose, “The Singularities of gravitational collapse and cosmology,” Proc. Roy. Soc. Lond. A 314, 529-548 (1970) doi:10.1098/rspa.1970.0021
- N. Graham, “Casimir energies and general relativity energy conditions,” J. Phys. A 39, 6423-6432 (2006) doi:10.1088/0305-4470/39/21/S37 [arXiv:hep-th/0601038 [hep-th]].
- J. Alexandre and D. Backhouse, “Null energy condition violation: Tunneling versus the Casimir effect,” Phys. Rev. D 107, no.8, 085022 (2023) doi:10.1103/PhysRevD.107.085022 [arXiv:2301.02455 [hep-th]].
- S. Perlmutter and B. P. Schmidt, “Measuring cosmology with supernovae,” Lect. Notes Phys. 598, 195-217 (2003) doi:10.1007/3-540-45863-8_11 [arXiv:astro-ph/0303428 [astro-ph]].
- M. S. Morris and K. S. Thorne, “Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity,” Am. J. Phys. 56, 395-412 (1988) doi:10.1119/1.15620
- M. S. Morris, K. S. Thorne and U. Yurtsever, “Wormholes, Time Machines, and the Weak Energy Condition,” Phys. Rev. Lett. 61, 1446-1449 (1988) doi:10.1103/PhysRevLett.61.1446
- H. Huang and J. Yang, “Charged Ellis Wormhole and Black Bounce,” Phys. Rev. D 100, no.12, 124063 (2019) doi:10.1103/PhysRevD.100.124063 [arXiv:1909.04603 [gr-qc]].
- J. Yang and H. Huang, “Trapping horizons of the evolving charged wormhole and black bounce,” Phys. Rev. D 104, no.8, 084005 (2021) doi:10.1103/PhysRevD.104.084005 [arXiv:2104.11134 [gr-qc]].
- M. Nozawa, “Static spacetimes haunted by a phantom scalar field III: asymptotically (A)dS solutions,” Phys. Rev. D 103, no.2, 024005 (2021) doi:10.1103/PhysRevD.103.024005 [arXiv:2010.07561 [gr-qc]].
- C. Chowdhury, A. Sen, P. Shanmugapriya and A. Virmani, “Supersymmetric Index for Small Black Holes,” [arXiv:2401.13730 [hep-th]].
- C. F. E. Holzhey and F. Wilczek, “Black holes as elementary particles,” Nucl. Phys. B 380, 447-477 (1992) doi:10.1016/0550-3213(92)90254-9 [arXiv:hep-th/9202014 [hep-th]].
- J. Preskill, P. Schwarz, A. D. Shapere, S. Trivedi and F. Wilczek, “Limitations on the statistical description of black holes,” Mod. Phys. Lett. A 6, 2353-2362 (1991) doi:10.1142/S0217732391002773
- Y. Huang and H. Zhang, “True gravitational atoms: Spherical cloud of dilatonic black holes,” Phys. Rev. D 105, no.12, 124056 (2022) doi:10.1103/PhysRevD.105.124056 [arXiv:2206.05645 [gr-qc]].
- R. A. Konoplya and A. Zhidenko, “Quasinormal modes of black holes: From astrophysics to string theory,” Rev. Mod. Phys. 83, 793-836 (2011) doi:10.1103/RevModPhys.83.793 [arXiv:1102.4014 [gr-qc]].
- R. A. Konoplya, “Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach,” Phys. Rev. D 68, 024018 (2003) doi:10.1103/PhysRevD.68.024018 [arXiv:gr-qc/0303052 [gr-qc]].
- R. A. Konoplya, “Quasinormal modes of the Schwarzschild black hole and higher order WKB approach,” J. Phys. Stud. 8, 93-100 (2004)
- J. L. Blázquez-Salcedo, X. Y. Chew and J. Kunz, “Scalar and axial quasinormal modes of massive static phantom wormholes,” Phys. Rev. D 98, no.4, 044035 (2018) doi:10.1103/PhysRevD.98.044035 [arXiv:1806.03282 [gr-qc]].
- R. A. Konoplya, A. Zhidenko and A. F. Zinhailo, “Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations,” Class. Quant. Grav. 36, 155002 (2019) doi:10.1088/1361-6382/ab2e25 [arXiv:1904.10333 [gr-qc]].
- A. Jansen, “Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes,” Eur. Phys. J. Plus 132, no.12, 546 (2017) doi:10.1140/epjp/i2017-11825-9 [arXiv:1709.09178 [gr-qc]].
- J. L. Blázquez-Salcedo, F. S. Khoo, J. Kunz and L. M. González-Romero, “Quasinormal modes of Kerr black holes using a spectral decomposition of the metric perturbations,” [arXiv:2312.10754 [gr-qc]].
- F. S. Khoo, B. Azad, J. L. Blázquez-Salcedo, L. M. González-Romero, B. Kleihaus, J. Kunz and F. Navarro-Lérida, “Quasinormal modes of rapidly rotating Ellis-Bronnikov wormholes,” [arXiv:2401.02898 [gr-qc]].
- A. K. W. Chung, P. Wagle and N. Yunes, “Spectral method for the gravitational perturbations of black holes: Schwarzschild background case,” Phys. Rev. D 107, no.12, 124032 (2023) doi:10.1103/PhysRevD.107.124032 [arXiv:2302.11624 [gr-qc]].
- A. K. W. Chung, P. Wagle and N. Yunes, “Spectral method for metric perturbations of black holes: Kerr background case in general relativity,” Phys. Rev. D 109, no.4, 044072 (2024) doi:10.1103/PhysRevD.109.044072 [arXiv:2312.08435 [gr-qc]].
- B. Azad, J. L. Blázquez-Salcedo, F. S. Khoo and J. Kunz, “Radial perturbations of Ellis-Bronnikov wormholes in slow rotation up to second order,” [arXiv:2403.08387 [gr-qc]].
- M. Y. Ou, M. Y. Lai and H. Huang, “Echoes from asymmetric wormholes and black bounce,” Eur. Phys. J. C 82, no.5, 452 (2022) doi:10.1140/epjc/s10052-022-10421-x [arXiv:2111.13890 [gr-qc]].
- H. Huang, M. Y. Ou, M. Y. Lai and H. Lu, “Echoes from classical black holes,” Phys. Rev. D 105, no.10, 104049 (2022) doi:10.1103/PhysRevD.105.104049 [arXiv:2112.14780 [hep-th]].
- G. Guo, P. Wang, H. Wu and H. Yang, “Quasinormal modes of black holes with multiple photon spheres,” JHEP 06, 060 (2022) doi:10.1007/JHEP06(2022)060 [arXiv:2112.14133 [gr-qc]].
- G. Guo, P. Wang, H. Wu and H. Yang, “Echoes from hairy black holes,” JHEP 06, 073 (2022) doi:10.1007/JHEP06(2022)073 [arXiv:2204.00982 [gr-qc]].
- R. A. Konoplya and A. Zhidenko, “Analytic expressions for quasinormal modes and grey-body factors in the eikonal limit and beyond,” Class. Quant. Grav. 40, no.24, 245005 (2023) doi:10.1088/1361-6382/ad0a52 [arXiv:2309.02560 [gr-qc]].
- H. Liu, P. Liu, Y. Liu, B. Wang and J. P. Wu, “Echoes from phantom wormholes,” Phys. Rev. D 103, no.2, 024006 (2021) doi:10.1103/PhysRevD.103.024006 [arXiv:2007.09078 [gr-qc]].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.