Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orthosymplectic diagonalization in Williamson's theorem (2403.11609v2)

Published 18 Mar 2024 in math.FA, math-ph, math.MP, math.SP, and quant-ph

Abstract: In this paper, we provide an algebraic condition on any $2n \times 2n$ real symmetric positive definite matrix which is necessary and sufficient for the matrix to be diagonalized by an orthosymplectic matrix in the sense of Williamson's theorem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. John Williamson. On the algebraic problem concerning the normal forms of linear dynamical systems. American Journal of Mathematics, 58(1):141–163, 1936.
  2. V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer New York, 1989.
  3. The real symplectic groups in quantum mechanics and optics. Pramana, 45:471–497, December 1995. arXiv:quant-ph/9509002.
  4. Maurice A. de Gosson. Symplectic Geometry and Quantum Mechanics, volume 166. Springer Science & Business Media, 2006.
  5. Symplectic Invariants and Hamiltonian Dynamics. Birkhäuser, 2012.
  6. Extremal entanglement and mixedness in continuous variable systems. Physical Review A, 70(2):022318, August 2004. arXiv:quant-ph/0402124.
  7. Xiao-yu Chen. Gaussian relative entropy of entanglement. Physical Review A, 71(6):062320, June 2005. arXiv:quant-ph/0402109.
  8. K. R. Parthasarathy. Symplectic dilations, Gaussian states and Gaussian channels. Indian Journal of Pure and Applied Mathematics, 46:419–439, August 2015. arXiv:1405.6476.
  9. F. Nicacio. Williamson theorem in classical, quantum, and statistical physics. American Journal of Physics, 89(12):1139–1151, December 2021. arXiv:2106.11965.
  10. Entanglement dynamics of coupled quantum oscillators in independent nonMarkovian baths. Entropy, 24(12):1814, December 2022. arXiv:2211.07124.
  11. Symplectic decomposition from submatrix determinants. Proceedings of the Royal Society A, 477(2255):20210513, November 2021. arXiv:2108.05364.
  12. On symplectic eigenvalues of positive definite matrices. Journal of Mathematical Physics, 56(11):112201, November 2015. arXiv:1803.04647.
  13. Log-majorizations for the (symplectic) eigenvalues of the Cartan barycenter. Linear Algebra and its Applications, 553:129–144, September 2018. arXiv:1710.00494.
  14. Hemant K. Mishra. First order sensitivity analysis of symplectic eigenvalues. Linear Algebra and its Applications, 604:324–345, November 2020. arXiv:2007.10572.
  15. A Schur-Horn theorem for symplectic eigenvalues. Linear Algebra and its Applications, 599:133–139, August 2020. arXiv:2004.03906.
  16. Variational principles for symplectic eigenvalues. Canadian Mathematical Bulletin, 64(3):553–559, September 2021.
  17. Tanvi Jain. Sums and products of symplectic eigenvalues. Linear Algebra and its Applications, 631:67–82, December 2021. arXiv:2108.10741.
  18. Derivatives of symplectic eigenvalues and a Lidskii type theorem. Canadian Journal of Mathematics, 74(2):457–485, April 2022. arXiv:2004.11024.
  19. Paul-Emile Paradan. The Horn cone associated with symplectic eigenvalues. Comptes Rendus. Mathématique, 360:1163–1168, May 2022. arXiv:2202.10260.
  20. Block perturbation of symplectic matrices in Williamson’s theorem. Canadian Mathematical Bulletin, 67(1):201–214, March 2024. arXiv:2307.01078.
  21. Computing symplectic eigenpairs of symmetric positive-definite matrices via trace minimization and Riemannian optimization. SIAM Journal on Matrix Analysis and Applications, 42(4):1732–1757, December 2021. arXiv:2101.02618.
  22. Shaowu Huang. A new version of Schur–Horn type theorem. Linear and Multilinear Algebra, 71(1):41–46, January 2023.
  23. Real normal operators and Williamson’s normal form. Acta Scientiarum Mathematicarum, 85:507–518, December 2019. arXiv:1804.03921.
  24. An order relation between eigenvalues and symplectic eigenvalues of a class of infinite dimensional operators. June 2023. arXiv:2212.03900.
  25. Hemant K. Mishra. Equality in some symplectic eigenvalue inequalities. arXiv preprint, 2024. arXiv:2309.04562.
  26. Computing symplectic eigenpairs of symmetric positive-definite matrices via trace minimization and Riemannian optimization. SIAM Journal on Matrix Analysis and Applications, 42(4):1732–1757, December 2021.
  27. Matrix Analysis. Cambridge University Press, 2012. Second Edition.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets