Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On generalization of Williamson's theorem to real symmetric matrices (2408.04894v1)

Published 9 Aug 2024 in math.FA, math-ph, math.MP, and math.SG

Abstract: Williason's theorem states that if $A$ is a $2n \times 2n$ real symmetric positive definite matrix then there exists a $2n \times 2n$ real symplectic matrix $M$ such that $MT A M=D \oplus D$, where $D$ is an $n \times n$ diagonal matrix with positive diagonal entries known as the symplectic eigenvalues of $A$. The theorem is known to be generalized to $2n \times 2n$ real symmetric positive semidefinite matrices whose kernels are symplectic subspaces of $\mathbb{R}{2n}$, in which case, some of the diagonal entries of $D$ are allowed to be zero. In this paper, we further generalize Williamson's theorem to $2n \times 2n$ real symmetric matrices by allowing the diagonal elements of $D$ to be any real numbers, and thus extending the notion of symplectic eigenvalues to real symmetric matrices. Also, we provide an explicit description of symplectic eigenvalues, construct symplectic matrices achieving Williamson's theorem type decomposition, and establish perturbation bounds on symplectic eigenvalues for a class of $2n \times 2n$ real symmetric matrices denoted by $\operatorname{EigSpSm}(2n)$. The set $\operatorname{EigSpSm}(2n)$ contains $2n \times 2n$ real symmetric positive semidefinite whose kernels are symplectic subspaces of $\mathbb{R}{2n}$. Our perturbation bounds on symplectic eigenvalues for $\operatorname{EigSpSm}(2n)$ generalize known perturbation bounds on symplectic eigenvalues of positive definite matrices given by Bhatia and Jain \textit{[J. Math. Phys. 56, 112201 (2015)]}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.