Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unbiased Parameter Estimation via DREM with Annihilators (2403.11076v3)

Published 17 Mar 2024 in eess.SY and cs.SY

Abstract: In adaptive control theory, the dynamic regressor extension and mixing (DREM) procedure has become widespread as it allows one to describe major of adaptive control problems in unified terms of the parameter estimation problem of a regression equation with a scalar regressor. However, when the system/parameterization is affected by perturbations, the estimation laws, which are designed on the basis of such equation, asymptotically provides only biased estimates. In this paper, based on the bias-eliminated least-squares (BELS) approach, a modification of DREM procedure is proposed to annihilate perturbations asymptotically and, consequently, asymptotically obtain unbiased estimates. The theoretical results are supported with mathematical modelling and can be used to design adaptive observers and control systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Kreisselmeier G., “Adaptive observers with exponential rate of convergence,” IEEE Transactions on Automatic Control, vol. 22, no.1, pp. 2–8, 1977.
  2. Kreisselmeier G., “On adaptive state regulation,” IEEE Transactions on Automatic Control, vol. 27, no. 1, pp. 3–17, 1982.
  3. Aranovskiy, S., Bobtsov, A., Ortega, R., Pyrkin, A., “Parameters estimation via dynamic regressor extension and mixing,” Proceedings of the 2016 American Control Conference, pp. 6971–6976, 2016.
  4. de Mathelin M., Lozano R., “Robust adaptive identification of slowly time-varying parameters with bounded disturbances,” Automatica, vol.35, no. 7, pp. 1291-1305, 1999.
  5. Lion P. M., “Rapid identification of linear and nonlinear systems,” AIAA Journal, vol. 5, no. 10, pp. 1835–1842, 1967.
  6. Wang L., Ortega R., Bobtsov A., Romero J. G., Yi B., “Identifiability implies robust, globally exponentially convergent on-line parameter estimation,” International Journal of Control, pp. 1–17, 2023. Early access.
  7. Ortega R., Nikiforov V., Gerasimov D., “On modified parameter estimators for identification and adaptive control. A unified framework and some new schemes,” Annual Reviews in Control, vol. 50, pp. 278–293, 2020.
  8. Ortega R., Romero J. G., Aranovskiy S., “A new least squares parameter estimator for nonlinear regression equations with relaxed excitation conditions and forgetting factor,” Systems & Control Letters, vol. 169, pp. 105377, 2022.
  9. Korotina M., Romero J. G., Aranovskiy S., Bobtsov A., Ortega R., “A new on-line exponential parameter estimator without persistent excitation,” Systems & Control Letters, vol. 159, pp. 105079, 2022.
  10. Ortega R., Aranovskiy S., Pyrkin A. A., Astolfi A., Bobtsov A. A., “New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases,” IEEE Transactions on Automatic Control, vol. 66, no. 5, pp. 2265–2272, 2020.
  11. Wang J., Efimov D., Bobtsov A., “On robust parameter estimation in finite-time without persistence of excitation,” IEEE Transactions on Automatic Control, vol. 65, no. 4, pp. 1731–1738, 2019.
  12. Wang J., Efimov D., Aranovskiy S., Bobtsov A., “Fixed-time estimation of parameters for non-persistent excitation,” European Journal of Control, vol. 55, no. 4, pp. 24–32, 2020.
  13. Korotina M., Aranovskiy S., Ushirobira R., Vedyakov, A., “On parameter tuning and convergence properties of the DREM procedure,” Proceedings of the 2020 European Control Conference (ECC), pp. 53–58, 2020.
  14. Aranovskiy S., Ushirobira R., Korotina M., Vedyakov A., “On preserving-excitation properties of Kreisselmeier’s regressor extension scheme,” IEEE Transactions on Automatic Control, vol. 68, no. 2., pp.1296–1302, 2022.
  15. Yi B., Ortega R., “Conditions for convergence of dynamic regressor extension and mixing parameter estimators using LTI filters,” IEEE Transactions on Automatic Control, vol. 68, no. 2., pp.1253–1258, 2022.
  16. Aranovskiy S., Bobtsov A. A., Pyrkin A. A., Ortega R., Chaillet A., “Flux and position observer of permanent magnet synchronous motors with relaxed persistency of excitation conditions,” IFAC-PapersOnLine, vol. 48, no. 11, pp. 301–306, 2015.
  17. Glushchenko A., Lastochkin K., “Exact Asymptotic Estimation of Unknown Parameters of Perturbed LRE with Application to State Observation,” arXiv preprint arXiv:2310.14073. pp.1–6, 2024.
  18. Korotina M., Aranovskiy S., Ushirobira R., Efimov D., Wang J., “Fixed-time parameter estimation via the discrete-time drem method,” IFAC-PapersOnLine, vol.56, no.2, pp. 4013–4018, 2023.
  19. Vorobyev V., Bobtsov A., Nikolaev N., Pyrkin A., “Application of a nonlinear operator to identify an unknown parameter for a scalar regression equation with disturbance in the measurement channel,” arXiv preprint arXiv:2305.16359. pp.1–9, 2023.
  20. Bobtsov A., Vorobyev V., Nikolaev N., Pyrkin A., Ortega R., “Synthesis of an adaptive observer of state variables for a linear stationary object in the presence of measurement noise,” arXiv preprint arXiv:2305.15496. pp.1–14, 2023.
  21. Glushchenko A., Lastochkin K., “Instrumental Variables based DREM for Online Asymptotic Identification of Perturbed Linear Systems,” arXiv preprint arXiv:2312.15631. pp.1–13, 2023.
  22. Zheng W. X., Feng C. B., “A bias-correction method for indirect identification of closed-loop systems,” Automatica, vol.31, no. 7, pp. 1019-1024, 1995.
  23. Gilson M., Van den Hof P., “On the relation between a bias-eliminated least-squares (BELS) and an IV estimator in closed-loop identification,” Automatica, vol.37, no. 10, pp. 1593-1600, 2001.
Citations (1)

Summary

We haven't generated a summary for this paper yet.