Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Spin and Orbital Magnetism by Light in Rutile Altermagnets (2403.10235v1)

Published 15 Mar 2024 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: While the understanding of altermagnetism is still at a very early stage, it is expected to play a role in various fields of condensed matter research, for example spintronics, caloritronics and superconductivity. In the field of optical magnetism, it is still unclear to which extent altermagnets as a class can exhibit a distinct behavior. Here we choose RuO$_2$, a prototype metallic altermagnet with a giant spin splitting, and CoF$_2$, an experimentally known insulating altermagnet, to study the light-induced magnetism in rutile altermagnets from first-principles. We demonstrate that in the non-relativisic limit the allowed sublattice-resolved orbital response exhibits symmetries, imposed by altermagnetism, which lead to a drastic canting of light-induced moments. On the other hand, we find that inclusion of spin-orbit interaction enhances the overall effect drastically, introduces a significant anisotropy with respect to the light polarization and strongly suppresses the canting of induced moments. Remarkably, we observe that the moments induced by linearly-polarized laser pulses in light altermagnets can even exceed in magnitude those predicted for heavy ferromagnets exposed to circularly polarized light. By resorting to microscopic tools we interpret our results in terms of the altermagnetic spin splittings and of their reciprocal space distribution. Based on our findings, we speculate that optical excitations may provide a unique tool to switch and probe the magnetic state of rutile altermagnets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. L. Šmejkal, J. Sinova, and T. Jungwirth, Beyond Conventional Ferromagnetism and Antiferromagnetism: A Phase with Nonrelativistic Spin and Crystal Rotation Symmetry, Phys. Rev. X 12, 031042 (2022a).
  2. L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging Research Landscape of Altermagnetism, Phys. Rev. X 12, 040501 (2022b).
  3. M. Naka, Y. Motome, and H. Seo, Anomalous Hall effect in antiferromagnetic perovskites, Phys. Rev. B 106, 195149 (2022).
  4. C. Sun and J. Linder, Spin pumping from a ferromagnetic insulator into an altermagnet, Phys. Rev. B 108, L140408 (2023).
  5. C. A. Corrêa and K. Výborný, Electronic structure and magnetic anisotropies of antiferromagnetic transition-metal difluorides, Phys. Rev. B 97, 235111 (2018).
  6. A. S. Borovik-Romanov, Piezomagnetism in the antiferromagnetic fluorides of cobalt and manganese, J. Exp. Theor. Phys. 38, 1088 (1960).
  7. N. F. Kharchenko, A. V. Bibik, and V. V. Eremenko, Quadratic magnetic rotation of the polarization plane of light in the antiferromagnet CoF22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT, Pis’ma v ZhETF 42, 447 (1985).
  8. N. Kharchenko, R. Szymczak, and M. Baran, Quadratic in field contribution to the magnetization of antiferromagnetic CoF22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT, Journal of Magnetism and Magnetic Materials 140-144, 161 (1995), International Conference on Magnetism.
  9. M. Battiato, G. Barbalinardo, and P. M. Oppeneer, Quantum theory of the inverse Faraday effect, Phys. Rev. B 89, 014413 (2014).
  10. F. Freimuth, S. Blügel, and Y. Mokrousov, Laser-induced torques in metallic ferromagnets, Phys. Rev. B 94, 144432 (2016).
  11. A. Kirilyuk, A. V. Kimel, and T. Rasing, Ultrafast optical manipulation of magnetic order, Rev. Mod. Phys. 82, 2731 (2010).
  12. F. Freimuth, S. Blügel, and Y. Mokrousov, Laser-induced torques in metallic antiferromagnets, Phys. Rev. B 103, 174429 (2021a).
  13. F. Freimuth, S. Blügel, and Y. Mokrousov, Charge and spin photocurrents in the Rashba model, Phys. Rev. B 103, 075428 (2021b).
  14. F. Freimuth, S. Blügel, and Y. Mokrousov, Laser-induced currents of charge and spin in the Rashba model (2017), arXiv:1710.10480 [cond-mat.mes-hall] .
  15. X. Mu, Y. Pan, and J. Zhou, Pure bulk orbital and spin photocurrent in two-dimensional ferroelectric materials, npj Computational Materials 7, 61 (2021).
  16. J. Zhou, Photo-magnetization in two-dimensional sliding ferroelectrics, npj 2D Materials and Applications 6, 15 (2022).
  17. F. Freimuth, S. Blügel, and Y. Mokrousov, Charge and spin photocurrents in the Rashba model, Phys. Rev. B 103, 075428 (2021c).
  18. G.-M. Choi, A. Schleife, and D. G. Cahill, Optical-helicity-driven magnetization dynamics in metallic ferromagnets, Nature Communications 8, 15085 (2017).
  19. A. V. Kimel and M. Li, Writing magnetic memory with ultrashort light pulses, Nature Reviews Materials 4, 189 (2019).
  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
  21. D. Singh, Ground-state properties of lanthanum: Treatment of extended-core states, Phys. Rev. B 43, 6388 (1991).
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.