Genuine non-Gaussian entanglement of light and quantum coherence for an atom from noisy multiphoton spin-boson interactions (2403.10207v2)
Abstract: Harnessing entanglement and quantum coherence plays a central role in advancing quantum technologies. In quantum optical light-atom platforms, these two fundamental resources are often associated with a Jaynes-Cummings model description describing the coherent exchange of a photon between an optical resonator mode and a two-level spin. In a generic nonlinear spin-boson system, more photons and more modes will take part in the interactions. Here we consider such a generalization -- the two-mode multiphoton Jaynes-Cummings (MPJC) model. We demonstrate how entanglement and quantum coherence can be optimally generated and subsequently manipulated in experimentally accessible parameter regimes. A detailed comparative analysis of this model reveals that nonlinearities within the MPJC interactions produce genuinely non-Gaussian entanglement, devoid of Gaussian contributions, from noisy resources. More specifically, strong coherent sources may be replaced by weaker, incoherent ones, significantly reducing the resource overhead, though at the expense of reduced efficiency. At the same time, increasing the multiphoton order of the MPJC interactions expedites the entanglement generation process, thus rendering the whole generation scheme again more efficient and robust. We further explore the use of additional dispersive spin-boson interactions and Kerr nonlinearities in order to create spin coherence solely from incoherent sources and to enhance the quantum correlations, respectively. As for the latter, somewhat unexpectedly, there is not necessarily an increase in quantum correlations due to the augmented nonlinearity. Towards possible applications of the MPJC model, we show how, with appropriately chosen experimental parameters, we can engineer arbitrary NOON states as well as the tripartite W state.
- A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium: Quantum coherence as a resource, Rev. Mod. Phys. 89, 041003 (2017).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005).
- O. Ahonen, M. Möttönen, and J. L. O’Brien, Entanglement-enhanced quantum key distribution, Phys. Rev. A 78, 032314 (2008).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006).
- C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Rev. Mod. Phys. 89, 035002 (2017).
- J. M. Raimond, M. Brune, and S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565 (2001).
- N. Shiraishi and R. Takagi, Alchemy of quantum coherence: Arbitrary amplification in asymptotic and catalytic coherence manipulation (2023), arXiv:2308.12338 [quant-ph] .
- T. V. Kondra, R. Ganardi, and A. Streltsov, Coherence manipulation in asymmetry and thermodynamics (2023), arXiv:2308.12814 [quant-ph] .
- E. Jaynes and F. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proceedings of the IEEE 51, 89 (1963).
- B. W. Shore and P. L. Knight, The Jaynes-Cummings model, J. Mod. Opt. 40, 1195 (1993).
- G. Rempe, H. Walther, and N. Klein, Observation of quantum collapse and revival in a one-atom maser, Phys. Rev. Lett. 58, 353 (1987).
- B. M. Rodríguez-Lara, H. Moya-Cessa, and A. B. Klimov, Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser, Phys. Rev. A 71, 023811 (2005).
- J. Larson and T. Mavrogordatos, The Jaynes–Cummings Model and Its Descendants, 2053-2563 (IOP Publishing, 2021).
- C. Sukumar and B. Buck, Multi-phonon generalisation of the Jaynes-Cummings model, Phys. Lett. A 83, 211 (1981).
- S. Singh, Field statistics in some generalized Jaynes-Cummings models, Phys. Rev. A 25, 3206 (1982).
- A. Shumovsky, F. L. Kien, and E. Aliskenderov, Squeezing in the multiphoton Jaynes-Cummings model, Phys. Lett. A 124, 351 (1987).
- F. L. Kien, M. Kozierowski, and T. Quang, Fourth-order squeezing in the multiphoton Jaynes-Cummings model, Phys. Rev. A 38, 263 (1988).
- L. Huai-xin and W. Xiao-qin, Multiphoton Jaynes-Cummings model solved via supersymmetric unitary transformation, Chin. Phys. 9, 568 (2000).
- F. A. A. El-Orany and A.-S. Obada, On the evolution of superposition of squeezed displaced number states with the multiphoton Jaynes–Cummings model, J. Opt. B Quantum Semiclass. Opt. 5, 60 (2003).
- F. A. A. El-Orany, The revival-collapse phenomenon in the fluctuations of quadrature field components of the multiphoton Jaynes–Cummings model, J. Phys. A Math. Theor. 37, 9023 (2004).
- C. J. Villas-Boas and D. Z. Rossatto, Multiphoton Jaynes-Cummings model: Arbitrary rotations in fock space and quantum filters, Phys. Rev. Lett. 122, 123604 (2019).
- S. Singh and K. Gilhare, Dynamical properties of intensity dependent two-mode raman coupled model in a Kerr medium, Int. J. Theor. Phys. 58, 1721 (2019).
- A. Miessen, P. J. Ollitrault, and I. Tavernelli, Quantum algorithms for quantum dynamics: A performance study on the spin-boson model, Phys. Rev. Res. 3, 043212 (2021).
- A. Rivas, Strong coupling thermodynamics of open quantum systems, Phys. Rev. Lett. 124, 160601 (2020).
- M. Vojta, Impurity quantum phase transitions, Phil. Mag. 86, 1807 (2006).
- L. Slodička, P. Marek, and R. Filip, Deterministic nonclassicality from thermal states, Opt. Express 24, 7858 (2016).
- P. Laha, D. W. Moore, and R. Filip, Non-Gaussian entanglement via splitting of a few thermal quanta 10.48550/arXiv.2208.07816 (2022b).
- S. Cusumano and G. D. Chiara, Structured quantum collision models: generating coherence with thermal resources (2023), arXiv:2307.07463 [quant-ph] .
- P. Laha, D. W. Moore, and R. Filip, Quantum coherence from a few incoherent bosons, Adv. Quantum Technol. 6, 2300168 (2023).
- M. Bergmann and P. van Loock, Quantum error correction against photon loss using noon states, Phys. Rev. A 94, 012311 (2016).
- V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature Photon. 5, 222 (2011).
- G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65, 032314 (2002).
- M. B. Plenio, Logarithmic negativity: A full entanglement monotone that is not convex, Phys. Rev. Lett. 95, 090503 (2005).
- T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014).
- R. Simon, Peres-horodecki separability criterion for continuous variable systems, Phys. Rev. Lett. 84, 2726 (2000).
- X.-B. Zou, J. Kim, and H.-W. Lee, Generation of two-mode nonclassical motional states and a fredkin gate operation in a two-dimensional ion trap, Phys. Rev. A 63, 065801 (2001).
- H. Chono, T. Kanao, and H. Goto, Two-qubit gate using conditional driving for highly detuned kerr nonlinear parametric oscillators, Phys. Rev. Res. 4, 043054 (2022).
- S. Kwon, S. Watabe, and J.-S. Tsai, Autonomous quantum error correction in a four-photon kerr parametric oscillator, npj Quantum Inf. 8, 40 (2022).
- J. Combes and D. J. Brod, Two-photon self-kerr nonlinearities for quantum computing and quantum optics, Phys. Rev. A 98, 062313 (2018).
- S. Singh and C. H. R. Ooi, Dynamics of Kerr-like medium with two-mode intensity-dependent cavity fields, Laser Phys. 29, 015202 (2018).
- P. van Loock, Optical hybrid approaches to quantum information, Laser & Photon. Rev. 5, 167 (2011).
- J. Johansson, P. Nation, and F. Nori, Qutip 2: A python framework for the dynamics of open quantum systems, Comp. Phys. Comm. 184, 1234 (2013).
- M. Yönaç, T. Yu, and J. H. Eberly, Sudden death of entanglement of two Jaynes–Cummings atoms, J. Phys. B: At. Mol. Opt. Phys. 39, S621 (2006).
- H. Häffner, C. Roos, and R. Blatt, Quantum computing with trapped ions, Phys. Rep. 469, 155 (2008).
- M. Thoss, H. Wang, and W. H. Miller, Self-consistent hybrid approach for complex systems: Application to the spin-boson model with debye spectral density, J. Chem. Phys. 115, 2991 (2001).
- C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004).
- A. Serafini, Quantum continuous variables: a primer of theoretical methods (CRC press, 2017).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.