Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Nonlinear-ancilla aided quantum algorithm for nonlinear Schrödinger equations (2403.10102v1)

Published 15 Mar 2024 in quant-ph

Abstract: We present an algorithm that uses a single ancilla qubit that can evolve nonlinearly, and show how to use it to efficiently solve generic nonlinear Schr\"odinger equations, including nonlocal Hartree equations and the Navier-Stokes equation for an irrotational, non-viscous flow. We propose a realization of such nonlinear qubits via spin-spin coupling of neutral atom qubits to a Bose-Einstein condensate. The results suggest that the use of nonlinear ancillas can provide substantial speedups compared to exclusively linear qubit devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Peter W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM Journal on Computing 26, 1484–1509 (1997), arxiv:quant-ph/9508027 .
  2. Lov K. Grover, “A different kind of quantum search,” Physical Review Letters 95, 150501 (2005), arxiv:quant-ph/0503205 .
  3. Aram W. Harrow, Avinatan Hassidim,  and Seth Lloyd, “Quantum algorithm for solving linear systems of equations,” Physical Review Letters 103, 150502 (2009), arxiv:0811.3171 [quant-ph] .
  4. Yudong Cao, Anargyros Papageorgiou, Iasonas Petras, Joseph Traub,  and Sabre Kais, “Quantum algorithm and circuit design solving the Poisson equation,” New Journal of Physics 15, 013021 (2013), arxiv:1207.2485 [quant-ph] .
  5. B. D. Clader, B. C. Jacobs,  and C. R. Sprouse, “Preconditioned quantum linear system algorithm,” Physical Review Letters 110, 250504 (2013), arxiv:1301.2340 [quant-ph] .
  6. Dominic W. Berry, Andrew M. Childs, Aaron Ostrander,  and Guoming Wang, “Quantum algorithm for linear differential equations with exponentially improved dependence on precision,” Communications in Mathematical Physics 356, 1057–1081 (2017), arxiv:1701.03684 [quant-ph] .
  7. Pedro C. S. Costa, Stephen Jordan,  and Aaron Ostrander, “Quantum Algorithm for Simulating the Wave Equation,” Physical Review A 99, 012323 (2019), arxiv:1711.05394 [quant-ph] .
  8. Alexander Engel, Graeme Smith,  and Scott E. Parker, “Quantum Algorithm for the Vlasov Equation,” Physical Review A 100, 062315 (2019), arxiv:1907.09418 [physics, physics:quant-ph] .
  9. Andrew M. Childs and Jin-Peng Liu, “Quantum spectral methods for differential equations,” Communications in Mathematical Physics 375, 1427–1457 (2020), arxiv:1901.00961 [quant-ph] .
  10. Andrew M. Childs, Jin-Peng Liu,  and Aaron Ostrander, “High-precision quantum algorithms for partial differential equations,” Quantum 5, 574 (2021), arxiv:2002.07868 [quant-ph] .
  11. Seth Lloyd, “Universal Quantum Simulators,” Science 273, 1073–1078 (1996).
  12. Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, 10th ed. (Cambridge Univ. Press, Cambridge, 2009).
  13. Sarah K. Leyton and Tobias J. Osborne, “A quantum algorithm to solve nonlinear differential equations,”  (2008), arxiv:0812.4423 [quant-ph] .
  14. Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J. Osborne, Robert Salzmann, Daniel Scheiermann,  and Ramona Wolf, “Training deep quantum neural networks,” Nature Communications 11, 808 (2020).
  15. William J. Huggins, Sam McArdle, Thomas E. O’Brien, Joonho Lee, Nicholas C. Rubin, Sergio Boixo, K. Birgitta Whaley, Ryan Babbush,  and Jarrod R. McClean, “Virtual Distillation for Quantum Error Mitigation,” Physical Review X 11, 041036 (2021).
  16. Michael Lubasch, Jaewoo Joo, Pierre Moinier, Martin Kiffner,  and Dieter Jaksch, “Variational quantum algorithms for nonlinear problems,” Physical Review A 101, 010301 (2020).
  17. Ilon Joseph, “Koopman-von Neumann Approach to Quantum Simulation of Nonlinear Classical Dynamics,” Physical Review Research 2, 043102 (2020), arxiv:2003.09980 [math-ph, physics:physics, physics:quant-ph] .
  18. Jin-Peng Liu, Herman Øie Kolden, Hari K. Krovi, Nuno F. Loureiro, Konstantina Trivisa,  and Andrew M. Childs, “Efficient quantum algorithm for dissipative nonlinear differential equations,” Proceedings of the National Academy of Sciences 118, e2026805118 (2021), arxiv:2011.03185 [physics, physics:quant-ph] .
  19. Seth Lloyd, Giacomo De Palma, Can Gokler, Bobak Kiani, Zi-Wen Liu, Milad Marvian, Felix Tennie,  and Tim Palmer, “Quantum algorithm for nonlinear differential equations,”  (2020), arxiv:2011.06571 [nlin, physics:quant-ph] .
  20. E. P. Gross, “Structure of a Quantized Vortex in Boson Systems,” Nuovo Cimento 20, 454–477 (1961).
  21. L. P. Pitaevskii, “Vortex Lines in an Imperfect Bose Gas,” Soviet Physics Journal of Experimental and Theoretical Physics (JETP) 13, 451–454 (1961).
  22. Daniel S. Abrams and Seth Lloyd, “Nonlinear quantum mechanics implies polynomial-time solution for NP-complete and #P problems,” Physical Review Letters 81, 3992–3995 (1998), arxiv:quant-ph/9801041 .
  23. Marek Czachor, “Local modification of the Abrams-Lloyd nonlinear algorithm,”  (1998a), arxiv:quant-ph/9803019 .
  24. Marek Czachor, “Notes on nonlinear quantum algorithms,” Acta Physica Slovaca 48, 157 (1998b).
  25. Andrew M. Childs and Joshua Young, “Optimal state discrimination and unstructured search in nonlinear quantum mechanics,” Physical Review A 93, 022314 (2016), arxiv:1507.06334 [quant-ph] .
  26. David A. Meyer and Thomas G. Wong, “Nonlinear quantum search using the Gross–Pitaevskii equation,” New Journal of Physics 15, 063014 (2013).
  27. David A. Meyer and Thomas G. Wong, “Quantum search with general nonlinearities,” Physical Review A 89, 012312 (2014).
  28. Note that for T^=f⁢(p^)^𝑇𝑓^𝑝\hat{T}=f(\hat{p})over^ start_ARG italic_T end_ARG = italic_f ( over^ start_ARG italic_p end_ARG ) a function of the momentum operator this can be achieved by a simple quantum Fourier transform of a diagonal unitary: Uϵ=UQFT⁢e−i⁢ϵ⁢f⁢(x^)⁢UQFT†subscript𝑈italic-ϵsubscript𝑈QFTsuperscripteiitalic-ϵ𝑓^𝑥superscriptsubscript𝑈QFT†U_{\epsilon}=U_{\text{QFT}}\mathrm{e}^{-\mathrm{i}\epsilon f(\hat{x})}U_{\text% {QFT}}^{\dagger}italic_U start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT = italic_U start_POSTSUBSCRIPT QFT end_POSTSUBSCRIPT roman_e start_POSTSUPERSCRIPT - roman_i italic_ϵ italic_f ( over^ start_ARG italic_x end_ARG ) end_POSTSUPERSCRIPT italic_U start_POSTSUBSCRIPT QFT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT † end_POSTSUPERSCRIPT. In particular, this holds if T^∼p^2similar-to^𝑇superscript^𝑝2\hat{T}\sim\hat{p}^{2}over^ start_ARG italic_T end_ARG ∼ over^ start_ARG italic_p end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is the kinetic energy operator.
  29. Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin,  and Harald Weinfurter, “Elementary gates for quantum computation,” Physical Review A 52, 3457–3467 (1995).
  30. Lidia Ruiz-Perez and Juan Carlos Garcia-Escartin, “Quantum arithmetic with the Quantum Fourier Transform,” Quantum Information Processing 16, 152 (2017), arxiv:1411.5949 [quant-ph] .
  31. Tim Byrnes, Kai Wen,  and Yoshihisa Yamamoto, “Macroscopic quantum computation using Bose-Einstein condensates,” Physical Review A 85, 040306 (2012).
  32. Tim Byrnes, Daniel Rosseau, Megha Khosla, Alexey Pyrkov, Andreas Thomasen, Tetsuya Mukai, Shinsuke Koyama, Ahmed Abdelrahman,  and Ebubechukwu Ilo-Okeke, “Macroscopic quantum information processing using spin coherent states,” Optics Communications Macroscopic Quantumness: Theory and Applications in Optical Sciences, 337, 102–109 (2015).
  33. Zhang Jiang and Carlton M. Caves, “Particle-number-conserving Bogoliubov approximation for Bose-Einstein condensates using extended catalytic states,” Physical Review A 93, 033623 (2016).
  34. A. Beige, S. F. Huelga, P. L. Knight, M. B. Plenio,  and R. C. Thompson, “Coherent manipulation of two dipole-dipole interacting ions,” Journal of Modern Optics 47, 401–414 (2000), arxiv:quant-ph/9903059 .
  35. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté,  and M. D. Lukin, “Fast Quantum Gates for Neutral Atoms,” Physical Review Letters 85, 2208–2211 (2000).
  36. Katrina Barnes, Peter Battaglino, Benjamin J. Bloom, Kayleigh Cassella, Robin Coxe, Nicole Crisosto, Jonathan P. King, Stanimir S. Kondov, Krish Kotru, Stuart C. Larsen, Joseph Lauigan, Brian J. Lester, Mickey McDonald, Eli Megidish, Sandeep Narayanaswami, Ciro Nishiguchi, Remy Notermans, Lucas S. Peng, Albert Ryou, Tsung-Yao Wu,  and Michael Yarwood, “Assembly and coherent control of a register of nuclear spin qubits,” Nature Communications 13, 2779 (2022).
  37. Loic Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond,  and Christophe Jurczak, “Quantum computing with neutral atoms,” Quantum 4, 327 (2020), arxiv:2006.12326 [quant-ph] .
  38. Chunji Wang, Chao Gao, Chao-Ming Jian,  and Hui Zhai, “Spin-Orbit Coupled Spinor Bose-Einstein Condensates,” Physical Review Letters 105, 160403 (2010).
  39. Chaohong Lee, Wenhua Hai, Xueli Luo, Lei Shi,  and Kelin Gao, “Quasispin model for macroscopic quantum tunneling between two coupled Bose-Einstein condensates,” Physical Review A 68, 053614 (2003).
  40. Andrey Maimistov, Boris Malomed,  and Anton Desyatnikov, “A potential of incoherent attraction between multidimensional solitons,” Physics Letters A 254, 179–184 (1999).
  41. Jing Li, Boris A. Malomed, Wenliang Li, Xi Chen,  and E. Ya Sherman, “Coupled density-spin Bose–Einstein condensates dynamics and collapse in systems with quintic nonlinearity,” Communications in Nonlinear Science and Numerical Simulation 82, 105045 (2020).
  42. C. Paré and M. Florjańczyk, “Approximate model of soliton dynamics in all-optical couplers,” Physical Review A 41, 6287–6295 (1990).
  43. Jürg Fröhlich and Enno Lenzmann, “Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation,” Seminaire EDP, Ecole Polytechnique 18, 1–26 (2004).
  44. E. Madelung, “Quantentheorie in hydrodynamischer Form,” Zeitschrift für Physik 40, 322–326 (1927).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube