Role of many phonon modes on the high-temperature linear-in-$T$ electronic resistivity (2403.09890v2)
Abstract: We theoretically consider the possibility that phonons may be playing a role in the observed linear-in-$T$ resistivity in cuprates by focusing on the obvious question: How can phonon scattering be consistent with a linear-in-$T$ resistivity with a constant slope given that cuprates have many phonon modes with different energies and electron-phonon couplings (e.g. 21 phonon modes for LSCO)? We show using an arbitrarily large number of independent phonon modes that, within a model Boltzmann transport theory, the emergent high-$T$ linear-in-$T$ resistivity manifests an approximately constant slope independent of the number of phonon modes except in some fine-tuned narrow temperature regimes. We also comment on the quantitative magnitude of the linear-in-$T$ resistivity in cuprates pointing out the constraints on the effective electron-phonon coupling necessary to produce the observed resistivity.
- S. A. Hartnoll and A. P. Mackenzie, Rev. Mod. Phys. 94, 041002 (2022).
- P. W. Phillips, N. E. Hussey, and P. Abbamonte, Science 377, eabh4273 (2022).
- J. Zaanen, SciPost Phys. 6, 061 (2019).
- F. Wu, E. Hwang, and S. Das Sarma, Phys. Rev. B 99, 165112 (2019).
- S. Das Sarma and F. Wu, Annals of Physics 417, 168193 (2020).
- E. H. Hwang and S. Das Sarma, Phys. Rev. B 99, 085105 (2019).
- S. Das Sarma and F. Wu, Phys. Rev. Res. 4, 033061 (2022).
- T. Sarkar, R. L. Greene, and S. Das Sarma, Phys. Rev. B 98, 224503 (2018).
- J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, 2001).
- N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, 1976).
- G. Grimvall, Physica Scripta 14, 63 (1976).
- H. Min, E. H. Hwang, and S. Das Sarma, Phys. Rev. B 86, 085307 (2012).
- J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge University Press, 1972).
- P. B. Allen, in Handbook of Superconductivity, edited by C. P. Poole (Academic Press, New York, 1999) Chap. 9.
- T. Kawamura and S. Das Sarma, Phys. Rev. B 45, 3612 (1992).
- W. Pickett, H. Krakauer, and R. Cohen, Applied Superconductivity 1, 251 (1993).
- I. I. Mazin and O. V. Dolgov, Phys. Rev. B 45, 2509 (1992).
- G. L. Zhao and J. Callaway, Phys. Rev. B 50, 9511 (1994).
- J. Song and J. F. Annett, Phys. Rev. B 51, 3840 (1995).
- R. E. Cohen, W. E. Pickett, and H. Krakauer, Phys. Rev. Lett. 64, 2575 (1990).
- H. Krakauer, W. E. Pickett, and R. E. Cohen, Phys. Rev. B 47, 1002 (1993).
- R. A. Matula, Journal of Physical and Chemical Reference Data 8, 1147 (1979).
- W. L. McMillan, Phys. Rev. 167, 331 (1968).
- M. Gurvitch, Phys. Rev. B 28, 544 (1983).
- V. J. Emery and S. A. Kivelson, Phys. Rev. Lett. 74, 3253 (1995).
- O. Gunnarsson, M. Calandra, and J. E. Han, Rev. Mod. Phys. 75, 1085 (2003).
- N. E. Hussey, K. Takenaka, and H. Takagi, Philosophical Magazine 84, 2847 (2004).
- Y. Werman and E. Berg, Phys. Rev. B 93, 075109 (2016).
- Y. Werman, S. A. Kivelson, and E. Berg, npj Quantum Materials 2, 7 (2017).
- A. J. Millis, J. Hu, and S. Das Sarma, Phys. Rev. Lett. 82, 2354 (1999).
- B. Sundqvist and B. Andersson, Solid State Communications 76, 1019 (1990).
- A. A. Patel and S. Sachdev, Phys. Rev. Lett. 123, 066601 (2019).
- A. A. Allocca, (2024), arXiv:2402.18626 [cond-mat.str-el] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.