Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Cutting a Wire with Non-Maximally Entangled States (2403.09690v2)

Published 13 Feb 2024 in quant-ph

Abstract: Distributed quantum computing supports combining the computational power of multiple quantum devices to overcome the limitations of individual devices. Circuit cutting techniques enable the distribution of quantum computations via classical communication. These techniques involve partitioning a quantum circuit into smaller subcircuits, each containing fewer qubits. The original circuit's outcome can be replicated by executing these subcircuits on separate devices and combining their results. However, the number of circuit executions required to achieve a fixed result accuracy with circuit cutting grows exponentially with the number of cuts, posing significant costs. In contrast, quantum teleportation allows the distribution of quantum computations without an exponential increase in circuit executions. Nevertheless, each teleportation requires a pre-shared pair of maximally entangled qubits for transmitting a quantum state, and non-maximally entangled qubits cannot be used for this purpose. Addressing this, our work explores utilizing non-maximally entangled qubit pairs in wire cutting, a specific form of circuit cutting, to mitigate the associated costs. The cost of this cutting procedure reduces with the increasing degree of entanglement in the pre-shared qubit pairs. We derive the optimal sampling overhead in this context and present a wire cutting technique employing pure non-maximally entangled states that achieves this optimal sampling overhead. Hence, this offers a continuum between existing wire cutting and quantum teleportation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Y. Cao et al., “Quantum Chemistry in the Age of Quantum Computing,” Chemical Reviews, vol. 119, no. 19, pp. 10 856–10 915, 2019.
  2. A. Giani and Z. Eldredge, “Quantum computing opportunities in renewable energy,” SN Computer Science, vol. 2, no. 5, 2021.
  3. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018), vol. 2, p. 79, 2018.
  4. J. Avron, O. Casper, and I. Rozen, “Quantum advantage and noise reduction in distributed quantum computing,” Physical Review A, vol. 104, no. 5, p. 052404, 2021.
  5. V. Dunjko, Y. Ge, and J. I. Cirac, “Computational speedups using small quantum devices,” Physical Review Letters 121, 250501, 2018.
  6. D. Cuomo, M. Caleffi, and A. S. Cacciapuoti, “Towards a distributed quantum computing ecosystem,” IET Quantum Communication, vol. 1, no. 1, pp. 3–8, 2020.
  7. I. Khait, E. Tham, D. Segal, and A. Brodutch, “Variational quantum eigensolvers in the era of distributed quantum computers,” Physical Review A, vol. 108, no. 5, p. l050401, 2023.
  8. S. Bravyi, O. Dial, J. M. Gambetta, D. Gil, and Z. Nazario, “The future of quantum computing with superconducting qubits,” Journal of Applied Physics, vol. 132, no. 16, p. 160902, 2022.
  9. A. Furutanpey, J. Barzen, M. Bechtold, S. Dustdar, F. Leymann, P. Raith, and F. Truger, “Architectural Vision for Quantum Computing in the Edge-Cloud Continuum,” in 2023 IEEE International Conference on Quantum Software (QSW).   IEEE, 2023, pp. 88–103.
  10. S. Bravyi, G. Smith, and J. A. Smolin, “Trading Classical and Quantum Computational Resources,” Physical Review X, vol. 6, no. 2, p. 021043, 2016.
  11. L. Brenner, C. Piveteau, and D. Sutter, “Optimal wire cutting with classical communication,” 2023, arXiv:2302.03366.
  12. K. Mitarai and K. Fujii, “Constructing a virtual two-qubit gate by sampling single-qubit operations,” New Journal of Physics, vol. 23, no. 2, p. 023021, 2021.
  13. T. Peng, A. Harrow, M. Ozols, and X. Wu, “Simulating Large Quantum Circuits on a Small Quantum Computer,” Physical Review Letters, vol. 125, p. 150504, 2019.
  14. C. Piveteau and D. Sutter, “Circuit knitting with classical communication,” IEEE Transactions on Information Theory, pp. 1–1, 2023.
  15. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Physical Review Letters, vol. 70, no. 13, pp. 1895–1899, 1993.
  16. M. Bechtold, J. Barzen, F. Leymann, and A. Mandl, “Circuit Cutting with Non-Maximally Entangled States,” 2023, arXiv:2306.12084.
  17. D. Goyeneche, D. Alsina, J. I. Latorre, A. Riera, and K. Życzkowski, “Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices,” Physical Review A, vol. 92, no. 3, p. 032316, 2015.
  18. E. Chitambar, D. Leung, L. Mančinska, M. Ozols, and A. Winter, “Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask),” Communications in Mathematical Physics, vol. 328, no. 1, pp. 303–326, 2014.
  19. M. A. Nielsen, “Conditions for a class of entanglement transformations,” Physical Review Letters, vol. 83, no. 2, pp. 436–439, 1999.
  20. X. Yuan, B. Regula, R. Takagi, and M. Gu, “Virtual quantum resource distillation,” 2023, arXiv:2303.00955.
  21. G. Vidal, “Entanglement monotones,” Journal of Modern Optics, vol. 47, no. 2–3, pp. 355–376, 2000.
  22. F. Verstraete and H. Verschelde, “Optimal teleportation with a mixed state of two qubits,” Physical Review Letters, vol. 90, no. 9, p. 097901, 2003.
  23. C. Bravo-Prieto, D. García-Martín, and J. I. Latorre, “Quantum singular value decomposer,” Physical Review A, vol. 101, no. 6, p. 062310, 2020.
  24. K. Temme, S. Bravyi, and J. M. Gambetta, “Error Mitigation for Short-Depth Quantum Circuits,” Physical Review Letters, vol. 119, no. 18, p. 180509, 2017.
  25. H. Harada, K. Wada, and N. Yamamoto, “Doubly optimal parallel wire cutting without ancilla qubits,” 2023, arXiv:2303.07340.
  26. H. Prakash and V. Verma, “Minimum assured fidelity and minimum average fidelity in quantum teleportation of single qubit using non-maximally entangled states,” Quantum Information Processing, vol. 11, no. 6, pp. 1951–1959, 2012.
  27. Y.-J. Gu, C.-M. Yao, Z.-W. Zhou, and G.-C. Guo, “General teleportation as a quantum channel,” Journal of Physics A: Mathematical and General, vol. 37, no. 6, pp. 2447–2453, 2004.
  28. M. Bechtold, J. Barzen, F. Leymann, and A. Mandl, “Data repository for: Cutting a Wire with Non-Maximally Entangled States,” 2024. [Online]. Available: https://doi.org/10.18419/darus-3888
  29. F. Mezzadri, “How to generate random matrices from the classical compact groups,” Notices of the American Mathematical Society, vol. 54, no. 5, pp. 592 – 604, 2007.
  30. Qiskit contributors, “Qiskit: An open-source framework for quantum computing,” 2023. [Online]. Available: https://doi.org/10.5281/zenodo.2573505
  31. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Physical Review Letters, vol. 76, no. 5, pp. 722–725, 1996.
  32. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Physical Review A, vol. 54, no. 5, pp. 3824–3851, 1996.
  33. F. Rozpędek, T. Schiet, L. P. Thinh, D. Elkouss, A. C. Doherty, and S. Wehner, “Optimizing practical entanglement distillation,” Physical Review A, vol. 97, no. 6, p. 062333, 2018.
  34. T. Zhang, Y. Zhang, L. Liu, X.-X. Fang, Q.-X. Zhang, X. Yuan, and H. Lu, “Experimental virtual distillation of entanglement and coherence,” 2023, arXiv:2311.09874.
  35. C. Ufrecht, M. Periyasamy, S. Rietsch, D. D. Scherer, A. Plinge, and C. Mutschler, “Cutting multi-control quantum gates with ZX calculus,” Quantum, vol. 7, p. 1147, 2023.
  36. C. Ufrecht, L. S. Herzog, D. D. Scherer, M. Periyasamy, S. Rietsch, A. Plinge, and C. Mutschler, “Optimal joint cutting of two-qubit rotation gates,” 2023, arXiv:2312.09679.
  37. W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi, “CutQC: using small Quantum computers for large Quantum circuit evaluations,” in Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems.   ACM, 2021, pp. 473–486.
  38. S. Brandhofer, I. Polian, and K. Krsulich, “Optimal partitioning of quantum circuits using gate cuts and wire cuts,” IEEE Transactions on Quantum Engineering, vol. 5, pp. 1–10, 2024.
  39. M. A. Perlin, Z. H. Saleem, M. Suchara, and J. C. Osborn, “Quantum circuit cutting with maximum likelihood tomography,” npj Quantum Information, vol. 7, no. 1, 2021.
  40. T. Ayral, F.-M. L. Régent, Z. Saleem, Y. Alexeev, and M. Suchara, “Quantum divide and compute: Exploring the effect of different noise sources,” SN Computer Science, vol. 2, no. 3, p. 132, 2021.
  41. M. Bechtold, J. Barzen, F. Leymann, A. Mandl, J. Obst, F. Truger, and B. Weder, “Investigating the effect of circuit cutting in QAOA for the MaxCut problem on NISQ devices,” Quantum Science and Technology, vol. 8, no. 4, 2023.
  42. P. Agrawal and A. K. Pati, “Probabilistic Quantum Teleportation,” Physics Letters A, vol. 305, no. 1-2, pp. 12–17, 2002.
  43. A. K. Pati and P. Agrawal, “Probabilistic teleportation and quantum operation,” Journal of Optics B: Quantum and Semiclassical Optics, vol. 6, no. 8, pp. S844–S848, 2004.
  44. B. Regula, K. Fang, X. Wang, and M. Gu, “One-shot entanglement distillation beyond local operations and classical communication,” New Journal of Physics, vol. 21, no. 10, p. 103017, 2019.
  45. B. Regula, K. Fang, X. Wang, and G. Adesso, “One-shot coherence distillation,” Physical Review Letters, vol. 121, no. 1, p. 010401, 2018.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com