Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

Machine learning for structural design models of continuous beam systems via influence zones (2403.09454v1)

Published 14 Mar 2024 in cs.LG

Abstract: This work develops a machine learned structural design model for continuous beam systems from the inverse problem perspective. After demarcating between forward, optimisation and inverse machine learned operators, the investigation proposes a novel methodology based on the recently developed influence zone concept which represents a fundamental shift in approach compared to traditional structural design methods. The aim of this approach is to conceptualise a non-iterative structural design model that predicts cross-section requirements for continuous beam systems of arbitrary system size. After generating a dataset of known solutions, an appropriate neural network architecture is identified, trained, and tested against unseen data. The results show a mean absolute percentage testing error of 1.6% for cross-section property predictions, along with a good ability of the neural network to generalise well to structural systems of variable size. The CBeamXP dataset generated in this work and an associated python-based neural network training script are available at an open-source data repository to allow for the reproducibility of results and to encourage further investigations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. doi:10.1098/rspa.2021.0526.
  2. doi:10.1007/BF01254725.
  3. doi:10.1098/rsta.2006.1930.
  4. doi:10.1016/j.ndteint.2018.06.004.
  5. doi:10.1088/1361-665X/abb352.
  6. doi:10.30919/esmm5f919.
  7. doi:10.1007/s00193-020-00970-z.
  8. doi:10.1016/j.forsciint.2015.04.014.
  9. doi:10.1137/1.9781611972344.
  10. doi:10.1016/j.ijsolstr.2021.03.015.
  11. doi:10.1007/s00158-017-1702-8.
  12. doi:10.1016/j.advengsoft.2021.102992.
  13. doi:10.1016/j.compstruc.2011.02.003.
  14. doi:10.1007/s00158-013-0978-6.
  15. doi:10.1007/s00158-019-02312-9.
  16. doi:10.1007/s00158-022-03242-9.
  17. doi:10.1108/EC-01-2022-0034.
  18. doi:10.1007/s00158-015-1260-x.
  19. doi:10.1007/s00158-013-1021-7.
  20. doi:10.3389/fbuil.2022.815717.
  21. doi:10.1017/S0962492919000059.
  22. doi:10.1177/14759217211037236.
  23. doi:10.1109/TMI.2018.2828303.
  24. doi:10.1111/j.1467-8667.1989.tb00026.x.
  25. doi:10.1111/j.1467-8667.1990.tb00377.x.
  26. doi:10.1016/0045-7949(93)90435-G.
  27. doi:10.1111/j.1467-8667.1994.tb00374.x.
  28. doi:10.1017/S0890060407000327.
  29. doi:10.1016/j.autcon.2016.02.002.
  30. doi:10.1016/j.cad.2021.103014.
  31. doi:10.1007/s00158-022-03194-0.
  32. doi:10.1115/1.4049533.
  33. doi:10.1016/j.autcon.2021.103931.
  34. doi:10.1016/j.autcon.2021.103664.
  35. doi:10.48550/ARXIV.2305.02211.
  36. doi:10.1115/1.4052298.
  37. doi:10.1007/978-3-031-13249-0_3.
  38. doi:10.1061/(ASCE)EI.1943-5541.0000205.
  39. doi:10.3403/03202162.
  40. doi:10.1016/0045-7949(91)90178-O.
  41. doi:10.1016/j.tws.2022.110518.
  42. doi:10.1016/0893-6080(95)00026-V.
  43. doi:10.1007/s00366-022-01760-0.
  44. doi:10.1016/j.aei.2021.101472.
  45. doi:10.1115/1.2429697.
  46. doi:10.1007/978-1-4614-7551-4.
  47. doi:10.1155/2013/271031.
  48. doi:10.3403/03270565.
  49. doi:10.1007/978-3-030-81935-4.
  50. doi:10.1023/B:STCO.0000035301.49549.88.
  51. doi:10.1023/A:1010933404324.
  52. doi:10.3403/30318327.
  53. doi:10.1002/ad.1564.
  54. doi:10.1016/j.csda.2009.04.009.
  55. doi:10.15131/shef.data.23945562.
  56. doi:10.1177/20414196231177364.
  57. doi:10.3390/batteries9020125.
  58. doi:10.1016/j.jobe.2020.101816.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets