Machine learning for structural design models of continuous beam systems via influence zones (2403.09454v1)
Abstract: This work develops a machine learned structural design model for continuous beam systems from the inverse problem perspective. After demarcating between forward, optimisation and inverse machine learned operators, the investigation proposes a novel methodology based on the recently developed influence zone concept which represents a fundamental shift in approach compared to traditional structural design methods. The aim of this approach is to conceptualise a non-iterative structural design model that predicts cross-section requirements for continuous beam systems of arbitrary system size. After generating a dataset of known solutions, an appropriate neural network architecture is identified, trained, and tested against unseen data. The results show a mean absolute percentage testing error of 1.6% for cross-section property predictions, along with a good ability of the neural network to generalise well to structural systems of variable size. The CBeamXP dataset generated in this work and an associated python-based neural network training script are available at an open-source data repository to allow for the reproducibility of results and to encourage further investigations.
- doi:10.1098/rspa.2021.0526.
- doi:10.1007/BF01254725.
- doi:10.1098/rsta.2006.1930.
- doi:10.1016/j.ndteint.2018.06.004.
- doi:10.1088/1361-665X/abb352.
- doi:10.30919/esmm5f919.
- doi:10.1007/s00193-020-00970-z.
- doi:10.1016/j.forsciint.2015.04.014.
- doi:10.1137/1.9781611972344.
- doi:10.1016/j.ijsolstr.2021.03.015.
- doi:10.1007/s00158-017-1702-8.
- doi:10.1016/j.advengsoft.2021.102992.
- doi:10.1016/j.compstruc.2011.02.003.
- doi:10.1007/s00158-013-0978-6.
- doi:10.1007/s00158-019-02312-9.
- doi:10.1007/s00158-022-03242-9.
- doi:10.1108/EC-01-2022-0034.
- doi:10.1007/s00158-015-1260-x.
- doi:10.1007/s00158-013-1021-7.
- doi:10.3389/fbuil.2022.815717.
- doi:10.1017/S0962492919000059.
- doi:10.1177/14759217211037236.
- doi:10.1109/TMI.2018.2828303.
- doi:10.1111/j.1467-8667.1989.tb00026.x.
- doi:10.1111/j.1467-8667.1990.tb00377.x.
- doi:10.1016/0045-7949(93)90435-G.
- doi:10.1111/j.1467-8667.1994.tb00374.x.
- doi:10.1017/S0890060407000327.
- doi:10.1016/j.autcon.2016.02.002.
- doi:10.1016/j.cad.2021.103014.
- doi:10.1007/s00158-022-03194-0.
- doi:10.1115/1.4049533.
- doi:10.1016/j.autcon.2021.103931.
- doi:10.1016/j.autcon.2021.103664.
- doi:10.48550/ARXIV.2305.02211.
- doi:10.1115/1.4052298.
- doi:10.1007/978-3-031-13249-0_3.
- doi:10.1061/(ASCE)EI.1943-5541.0000205.
- doi:10.3403/03202162.
- doi:10.1016/0045-7949(91)90178-O.
- doi:10.1016/j.tws.2022.110518.
- doi:10.1016/0893-6080(95)00026-V.
- doi:10.1007/s00366-022-01760-0.
- doi:10.1016/j.aei.2021.101472.
- doi:10.1115/1.2429697.
- doi:10.1007/978-1-4614-7551-4.
- doi:10.1155/2013/271031.
- doi:10.3403/03270565.
- doi:10.1007/978-3-030-81935-4.
- doi:10.1023/B:STCO.0000035301.49549.88.
- doi:10.1023/A:1010933404324.
- doi:10.3403/30318327.
- doi:10.1002/ad.1564.
- doi:10.1016/j.csda.2009.04.009.
- doi:10.15131/shef.data.23945562.
- doi:10.1177/20414196231177364.
- doi:10.3390/batteries9020125.
- doi:10.1016/j.jobe.2020.101816.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.