Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum Channel Coding Rate of Finite Block Length MIMO Faster-Than-Nyquist Signaling (2403.08989v2)

Published 13 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: The pursuit of higher data rates and efficient spectrum utilization in modern communication technologies necessitates novel solutions. In order to provide insights into improving spectral efficiency and reducing latency, this study investigates the maximum channel coding rate (MCCR) of finite block length (FBL) multiple-input multiple-output (MIMO) faster-than-Nyquist (FTN) channels. By optimizing power allocation, we derive the system's MCCR expression. Simulation results are compared with the existing literature to reveal the benefits of FTN in FBL transmission.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. L. Chettri and R. Bera, “A comprehensive survey on internet of things (IoT) toward 5G wireless systems,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16–32, 2020.
  2. B. S. Khan, S. Jangsher, A. Ahmed, and A. Al-Dweik, “URLLC and eMBB in 5G industrial IoT: A survey,” IEEE Open Journal of the Communications Society, vol. 3, pp. 1134–1163, 2022.
  3. A. Paulraj, D. Gore, R. Nabar, and H. Bolcskei, “An overview of MIMO communications - a key to gigabit wireless,” Proceedings of the IEEE, vol. 92, no. 2, pp. 198–218, 2004.
  4. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186–195, 2014.
  5. H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1834–1850, 2017.
  6. J. E. Mazo, “Faster-than-Nyquist signaling,” The Bell System Technical Journal, vol. 54, no. 8, pp. 1451–1462, 1975.
  7. T. Ishihara, S. Sugiura, and L. Hanzo, “The evolution of faster-than-Nyquist signaling,” IEEE Access, vol. 9, pp. 86 535–86 564, 2021.
  8. Z. Zhang, M. Yuksel, G. M. Guvensen, and H. Yanikomeroglu, “Capacity region of asynchronous multiple access channels with FTN,” IEEE Communications Letters, vol. 27, no. 7, pp. 1719–1723, 2023.
  9. Z. Zhang, M. Yuksel, H. Yanikomeroglu, B. K. Ng, and C.-T. Lam, “MIMO asynchronous MAC with faster-than-Nyquist (FTN) signaling,” IEEE Globecom 2023, 04-08 December 2023, Kuala Lumpur, Malaysia.
  10. Z. Zhang, M. Yuksel, and H. Yanikomeroglu, “Faster-than-Nyquist signaling for MIMO communications,” IEEE Transactions on Wireless Communications, vol. 22, no. 4, pp. 2379–2392, 2023.
  11. Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding: non-asymptotic fundamental limits.”   PhD thesis, Princeton University, 2010.
  12. M. Mohammadkarimi, R. Schober, and V. W. S. Wong, “Channel coding rate for finite blocklength faster-than-Nyquist signaling,” IEEE Communications Letters, vol. 25, no. 1, pp. 64–68, 2021.
  13. Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the finite blocklength regime,” IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307–2359, 2010.
  14. T. Erseghe, “Coding in the finite-blocklength regime: Bounds based on Laplace integrals and their asymptotic approximations,” IEEE Transactions on Information Theory, vol. 62, no. 12, pp. 6854–6883, 2016.
  15. Y. J. D. Kim, “On merits of faster-than-Nyquist signaling in the finite blocklength regime,” arXiv:2312.01253, 2023.
  16. L. Zheng and D. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,” IEEE Transactions on Information Theory, vol. 49, no. 5, pp. 1073–1096, 2003.
Citations (1)

Summary

We haven't generated a summary for this paper yet.