Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization of the Downlink Spectral- and Energy-Efficiency of RIS-aided Multi-user URLLC MIMO Systems (2402.16434v2)

Published 26 Feb 2024 in cs.IT, eess.SP, and math.IT

Abstract: Modern wireless communication systems are expected to provide improved latency and reliability. To meet these expectations, a short packet length is needed, which makes the first-order Shannon rate an inaccurate performance metric for such communication systems. A more accurate approximation of the achievable rates of finite-block-length (FBL) coding regimes is known as the normal approximation (NA). It is therefore of substantial interest to study the optimization of the FBL rate in multi-user multiple-input multiple-output (MIMO) systems, in which each user may transmit and/or receive multiple data streams. Hence, we formulate a general optimization problem for improving the spectral and energy efficiency of multi-user MIMO-aided ultra-reliable low-latency communication (URLLC) systems, which are assisted by reconfigurable intelligent surfaces (RISs). We show that an RIS is capable of substantially improving the performance of multi-user MIMO-aided URLLC systems. Moreover, the benefits of RIS increase as the packet length and/or the tolerable bit error rate are reduced. This reveals that RISs can be even more beneficial in URLLC systems for improving the FBL rates than in conventional systems approaching Shannon rates.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. C.-X. Wang et al., “On the road to 6G: Visions, requirements, key technologies and testbeds,” IEEE Commun. Surv. Tutor., , vol. 25, no. 2, pp. 905–974, 2023.
  2. T. Gong et al., “Holographic MIMO communications: Theoretical foundations, enabling technologies, and future directions,” IEEE Commun. Surv. Tutor., doi: 10.1109/COMST.2023.3309529, 2023.
  3. Q. Wu et al., “Intelligent reflecting surface aided wireless communications: A tutorial,” IEEE Trans. Commun., vol. 69, no. 5, pp. 3313–3351, 2021.
  4. M. Di Renzo et al., “Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450–2525, 2020.
  5. C. Huang et al., “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, 2019.
  6. Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,” IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, 2019.
  7. Q.-U.-A. Nadeem, et al., “Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems,” IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 7748–7764, 2020.
  8. M. Soleymani, I. Santamaria, E. Jorswieck, and S. Rezvani, “NOMA-based improper signaling for multicell MISO RIS-assisted broadcast channels,” IEEE Trans. Signal Process., vol. 71, pp. 963–978, March 2023.
  9. I. Santamaria, M. Soleymani, E. Jorswieck, and J. Gutierrez, “Interference leakage minimization in RIS-assisted MIMO interference channels,” Proc. IEEE Int. Conf. on Acoust., Speech and Signal Processing (ICASSP), pp. 1–5, 2023.
  10. M. Soleymani, I. Santamaria, A. Sezgin, and E. Jorswieck, “Maximization of minimum rate in MIMO OFDM RIS-assisted broadcast channels,” IEEE Int. Workshop Comput. Adv. Multi-Sensor Adaptive Process. (CAMSAP), pp. 11–15, 2023.
  11. M. Soleymani, I. Santamaria, and E. Jorswieck, “Spectral and energy efficiency maximization of MISO STAR-RIS-assisted URLLC systems,” IEEE Access, vol. 11, pp. 70833–70852, 2023.
  12. M. Soleymani, I. Santamaria, E. Jorswieck, and B. Clerckx, “Optimization of rate-splitting multiple access in beyond diagonal RIS-assisted URLLC systems,” IEEE Trans. Wireless Commun., , doi: 10.1109/TWC.2023.3324190, 2023.
  13. Y. Li, C. Yin, T. Do-Duy, A. Masaracchia, and T. Q. Duong, “Aerial reconfigurable intelligent surface-enabled URLLC UAV systems,” IEEE Access, vol. 9, pp. 140 248–140 257, 2021.
  14. T.-H. Vu, T.-V. Nguyen, D. B. da Costa, and S. Kim, “Intelligent reflecting surface-aided short-packet non-orthogonal multiple access systems,” IEEE Trans. Veh. Technol., vol. 71, no. 4, pp. 4500–4505, 2022.
  15. H. Xie, J. Xu, Y.-F. Liu, L. Liu, and D. W. K. Ng, “User grouping and reflective beamforming for IRS-aided URLLC,” IEEE Wireless Commun. Lett., vol. 10, no. 11, pp. 2533–2537, 2021.
  16. M. Almekhlafi, M. A. Arfaoui, M. Elhattab, C. Assi, and A. Ghrayeb, “Joint resource allocation and phase shift optimization for RIS-aided eMBB/URLLC traffic multiplexing,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1304–1319, 2022.
  17. W. R. Ghanem, V. Jamali, and R. Schober, “Optimal resource allocation for multi-user OFDMA-URLLC MEC systems,” IEEE Open J. Commun. Soc., vol. 3, pp. 2005–2023, 2022.
  18. B. Makki, T. Svensson, M. Coldrey, and M.-S. Alouini, “Finite block-length analysis of large-but-finite MIMO systems,” IEEE Wireless Commun. Lett., vol. 8, no. 1, pp. 113–116, Feb. 2019.
  19. B. Makki, T. Svensson, T. Eriksson, and M.-S. Alouini, “On the required number of antennas in a point-to-point large-but-finite MIMO system: Outage-limited scenario,” IEEE Trans. Commun., vol. 64, no. 5, pp. 1968–1983, May 2016.
  20. C. Li, Y. Wang, W. Chen, and H. V. Poor, “Ultra-reliable and low-latency multiple-antenna communications in the high SNR regime,” IEEE Wireless Commun. Lett., vol. 12, no. 3, pp. 461–465, March 2023.
  21. Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, 2010.
  22. T. Erseghe, “Coding in the finite-blocklength regime: Bounds based on laplace integrals and their asymptotic approximations,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 6854–6883, 2016.
  23. ——, “On the evaluation of the Polyanskiy-Poor–Verdú converse bound for finite block-length coding in AWGN,” IEEE Trans. Inf. Theory, vol. 61, no. 12, pp. 6578–6590, 2015.
  24. M. Soleymani, I. Santamaria, and P. J. Schreier, “Improper signaling for multicell MIMO RIS-assisted broadcast channels with I/Q imbalance,” IEEE Trans. Green Commun. Netw., vol. 6, no. 2, pp. 723–738, 2022.
  25. M. Soleymani, I. Santamaria, and E. Jorswieck, “Rate region of MIMO RIS-assisted broadcast channels with rate splitting and improper signaling,” WSA 2023; 26th International ITG Workshop on Smart Antennas, pp. 1–6, 2023.
  26. J. Scarlett, V. Y. Tan, and G. Durisi, “The dispersion of nearest-neighbor decoding for additive non-Gaussian channels,” IEEE Trans. Inf. Theory, vol. 63, no. 1, pp. 81–92, 2016.
  27. M. Abughalwa, H. Tuan, D. Nguyen, H. Poor, and L. Hanzo, “Finite-blocklength RIS-aided transmit beamforming,” IEEE Trans. Veh. Technol., vol. 71, no. 11, pp. 12 374–12 379, 2022.
  28. W. R. Ghanem, V. Jamali, and R. Schober, “Joint beamforming and phase shift optimization for multicell IRS-aided OFDMA-URLLC systems,” in IEEE Wireless Commun. and Netw. Conf. (WCNC), pp. 1–7, 2021.
  29. H. Ren, K. Wang, and C. Pan, “Intelligent reflecting surface-aided URLLC in a factory automation scenario,” IEEE Trans. Commun., vol. 70, no. 1, pp. 707–723, 2021.
  30. B. Zhang, K. Wang, K. Yang, and G. Zhang, “IRS-assisted short packet wireless energy transfer and communications,” IEEE Wireless Commun. Lett., vol. 11, no. 2, pp. 303–307, 2022.
  31. C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, and L. Hanzo, “Multicell MIMO communications relying on intelligent reflecting surfaces,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5218–5233, 2020.
  32. H. Yu et al., “Joint design of reconfigurable intelligent surfaces and transmit beamforming under proper and improper Gaussian signaling,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2589–2603, 2020.
  33. L. Zhang, Y. Wang, W. Tao, Z. Jia, T. Song, and C. Pan, “Intelligent reflecting surface aided MIMO cognitive radio systems,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 11 445–11 457, 2020.
  34. H. Zhang and B. Di, “Intelligent omni-surfaces: Simultaneous refraction and reflection for full-dimensional wireless communications,” IEEE Commun. Surv. Tutor., vol. 24, no. 4, pp. 1997–2028, 2022.
  35. Y. Liu, X. Mu, J. Xu, R. Schober, Y. Hao, H. V. Poor, and L. Hanzo, “STAR: Simultaneous transmission and reflection for 360 coverage by intelligent surfaces,” IEEE Wireless Commun., vol. 28, no. 6, pp. 102–109, 2021.
  36. X. Mu, Y. Liu, L. Guo, J. Lin, and R. Schober, “Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications,” IEEE Trans. Wireless Commun., vol. 21, no. 5, pp. 3083–3098, 2022.
  37. M. Soleymani, I. Santamaria, A. Sezgin, and E. Jorswieck, “Maximizing spectral and energy efficiency in multi-user MIMO OFDM systems with RIS and hardware impairment,” arXiv preprint arXiv:2401.11921, 2024.
  38. M. Soleymani, I. Santamaria, and E. Jorswieck, “Energy-efficient rate splitting for MIMO STAR-RIS-assisted broadcast channels with I/Q imbalance,” Proc. IEEE Eu. Signal Process. Conf. (EUSIPCO), pp. 1504–1508, 2023.
  39. ——, “NOMA-based improper signaling for MIMO STAR-RIS-assisted broadcast channels with hardware impairments,” IEEE Global Commun. Conf. (GLOBECOM), 2023.
  40. J. Xu, Y. Liu, X. Mu, R. Schober, and H. V. Poor, “STAR-RISs: A correlated T&\&&R phase-shift model and practical phase-shift configuration strategies,” IEEE J. Sel. Topics Signal Process., pp. 1–1, 2022.
  41. A. Zappone and E. Jorswieck, “Energy efficiency in wireless networks via fractional programming theory,” Found Trends®normal-®{}^{\textregistered}start_FLOATSUPERSCRIPT ® end_FLOATSUPERSCRIPT in Commun. Inf. Theory, vol. 11, no. 3-4, pp. 185–396, 2015.
  42. M. Soleymani, I. Santamaria, and E. Jorswieck, “Rate splitting in MIMO RIS-assisted systems with hardware impairments and improper signaling,” IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 4580–4597, April 2023.
  43. Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing, communications, and machine learning,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, 2017.
  44. M. Soleymani et al., “Improper Gaussian signaling for the K𝐾Kitalic_K-user MIMO interference channels with hardware impairments,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 11 632–11 645, 2020.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com