Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projective Quantum Eigensolver via Adiabatically Decoupled Subsystem Evolution: a Resource Efficient Approach to Molecular Energetics in Noisy Quantum Computers (2403.08519v2)

Published 13 Mar 2024 in quant-ph

Abstract: Quantum computers hold immense potential in the field of chemistry, ushering new frontiers to solve complex many body problems that are beyond the reach of classical computers. However, noise in the current quantum hardware limits their applicability to large chemical systems. This work encompasses the development of a projective formalism that aims to compute ground-state energies of molecular systems accurately using Noisy Intermediate Scale Quantum (NISQ) hardware in a resource efficient manner. Our approach is reliant upon the formulation of a bipartitely decoupled parameterized ansatz within the disentangled unitary coupled cluster (dUCC) framework based on the principles of synergetics. Such decoupling emulates the total parameter optimization in a lower dimensional manifold, while a mutual synergistic relationship among the parameters is exploited to ensure characteristic accuracy. Without any pre-circuit measurements, our method leads to a highly compact fixed-depth ansatz with shallower circuits and fewer expectation value evaluations. Through analytical and numerical demonstrations, we demonstrate the method's superior performance under noise while concurrently ensuring requisite accuracy in future fault-tolerant systems. This approach enables rapid exploration of emerging chemical spaces by efficient utilization of near-term quantum hardware resources.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (78)
  1. W. Kohn, “Nobel lecture: Electronic structure of matter—wave functions and density functionals,” Reviews of Modern Physics 71, 1253 (1999).
  2. S. R. White, “Density matrix formulation for quantum renormalization groups,” Physical review letters 69, 2863 (1992).
  3. B. Huron, J. Malrieu, and P. Rancurel, “Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions,” The Journal of Chemical Physics 58, 5745–5759 (1973).
  4. R. J. Buenker and S. D. Peyerimhoff, “Individualized configuration selection in ci calculations with subsequent energy extrapolation,” Theoretica chimica acta 35, 33–58 (1974).
  5. J. C̆íz̆ek, “On the correlation problem in atomic and molecular systems. calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods,” J. Chem. Phys. 45, 4256–4266 (1966).
  6. J. C̆íz̆ek, “On the use of the cluster expansion and the technique of diagrams in calculations of correlation effects in atoms and molecules,” Adv. Chem. Phys. 14, 35–89 (1969).
  7. J. Čížek and J. Paldus, “Correlation problems in atomic and molecular systems iii. rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methods,” Int. J. Quantum Chem. 5, 359–379 (1971).
  8. R. J. Bartlett and M. Musiał, “Coupled-cluster theory in quantum chemistry,” Reviews of Modern Physics 79, 291 (2007).
  9. T. D. Crawford and H. F. Schaefer, “An introduction to coupled cluster theory for computational chemists,” Reviews in computational chemistry 14, 33–136 (2000).
  10. D. S. Abrams and S. Lloyd, “Simulation of many-body fermi systems on a universal quantum computer,” Physical Review Letters 79, 2586 (1997).
  11. D. S. Abrams and S. Lloyd, “Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors,” Physical Review Letters 83, 5162 (1999).
  12. D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Physical Review Letters 81, 2594 (1998).
  13. D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschritte der Physik: Progress of Physics 48, 771–783 (2000).
  14. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” nature 464, 45–53 (2010).
  15. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature communications 5, 4213 (2014).
  16. H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, “An adaptive variational algorithm for exact molecular simulations on a quantum computer,” Nature communications 10, 3007 (2019).
  17. A. Delgado, J. M. Arrazola, S. Jahangiri, Z. Niu, J. Izaac, C. Roberts, and N. Killoran, “Variational quantum algorithm for molecular geometry optimization,” Physical Review A 104, 052402 (2021).
  18. D. Mondal, D. Halder, S. Halder, and R. Maitra, “Development of a compact Ansatz via operator commutativity screening: Digital quantum simulation of molecular systems,” The Journal of Chemical Physics 159, 014105 (2023).
  19. C. Feniou, M. Hassan, D. Traoré, E. Giner, Y. Maday, and J.-P. Piquemal, “Overlap-adapt-vqe: practical quantum chemistry on quantum computers via overlap-guided compact ansätze,” Communications Physics 6, 192 (2023).
  20. L. Zhao, J. Goings, K. Shin, W. Kyoung, J. I. Fuks, J.-K. Kevin Rhee, Y. M. Rhee, K. Wright, J. Nguyen, J. Kim, et al., “Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers,” npj Quantum Information 9, 60 (2023).
  21. H. L. Tang, V. Shkolnikov, G. S. Barron, H. R. Grimsley, N. J. Mayhall, E. Barnes, and S. E. Economou, “qubit-adapt-vqe: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor,” PRX Quantum 2, 020310 (2021).
  22. Y. S. Yordanov, V. Armaos, C. H. Barnes, and D. R. Arvidsson-Shukur, “Qubit-excitation-based adaptive variational quantum eigensolver,” Communications Physics 4, 228 (2021).
  23. M. Ostaszewski, E. Grant, and M. Benedetti, “Structure optimization for parameterized quantum circuits,” Quantum 5, 391 (2021).
  24. N. V. Tkachenko, J. Sud, Y. Zhang, S. Tretiak, P. M. Anisimov, A. T. Arrasmith, P. J. Coles, L. Cincio, and P. A. Dub, “Correlation-informed permutation of qubits for reducing ansatz depth in the variational quantum eigensolver,” PRX Quantum 2, 020337 (2021).
  25. F. Zhang, N. Gomes, Y. Yao, P. P. Orth, and T. Iadecola, “Adaptive variational quantum eigensolvers for highly excited states,” Physical Review B 104, 075159 (2021).
  26. S. Sim, J. Romero, J. F. Gonthier, and A. A. Kunitsa, “Adaptive pruning-based optimization of parameterized quantum circuits,” Quantum Science and Technology 6, 025019 (2021).
  27. S. Halder, A. Dey, C. Shrikhande, and R. Maitra, “Machine learning assisted construction of a shallow depth dynamic ansatz for noisy quantum hardware,” Chem. Sci. 15, 3279–3289 (2024).
  28. D. Halder, V. S. Prasannaa, and R. Maitra, “Dual exponential coupled cluster theory: Unitary adaptation, implementation in the variational quantum eigensolver framework and pilot applications,” The Journal of Chemical Physics 157, 174117 (2022).
  29. D. Halder, S. Halder, D. Mondal, C. Patra, A. Chakraborty, and R. Maitra, “Corrections beyond coupled cluster singles and doubles through selected generalized rank-two operators: digital quantum simulation of strongly correlated systems,” Journal of Chemical Sciences 135, 41 (2023a).
  30. D. Halder, D. Mondal, and R. Maitra, “Noise-independent Route towards the Genesis of a COMPACT Ansatz for Molecular Energetics: a Dynamic Approach,” The Journal of Chemical Physics 160, XXXX (2024).
  31. N. H. Stair and F. A. Evangelista, “Simulating many-body systems with a projective quantum eigensolver,” PRX Quantum 2, 030301 (2021).
  32. S. Halder, C. Shrikhande, and R. Maitra, “Development of zero-noise extrapolated projective quantum algorithm for accurate evaluation of molecular energetics in noisy quantum devices,” The Journal of Chemical Physics 159 (2023).
  33. J. P. Misiewicz and F. A. Evangelista, “Implementation of the projective quantum eigensolver on a quantum computer,” arXiv preprint arXiv:2310.04520  (2023).
  34. M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, “Cost function dependent barren plateaus in shallow parametrized quantum circuits,” Nature communications 12, 1791 (2021).
  35. S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles, “Noise-induced barren plateaus in variational quantum algorithms,” Nature communications 12, 6961 (2021).
  36. F. A. Evangelista, G. K.-L. Chan, and G. E. Scuseria, “Exact parameterization of fermionic wave functions via unitary coupled cluster theory,” The Journal of chemical physics 151, 244112 (2019).
  37. Y. S. Yordanov, D. R. Arvidsson-Shukur, and C. H. Barnes, “Efficient quantum circuits for quantum computational chemistry,” Physical Review A 102, 062612 (2020).
  38. I. Magoulas and F. A. Evangelista, “Cnot-efficient circuits for arbitrary rank many-body fermionic and qubit excitations,” Journal of Chemical Theory and Computation 19, 822–836 (2023).
  39. H. Haken, “Generalized ginzburg-landau equations for phase transition-like phenomena in lasers, nonlinear optics, hydrodynamics and chemical reactions,” Zeitschrift für Physik B Condensed Matter 21, 105–114 (1975).
  40. H. Haken, Synergetics: Introduction and advanced topics (Springer Science & Business Media, 2013).
  41. A. Wunderlin and H. Haken, “Generalized ginzburg-landau equations, slaving principle and center manifold theorem,” Zeitschrift für Physik B Condensed Matter 44, 135–141 (1981).
  42. V. Agarawal, A. Chakraborty, and R. Maitra, “Stability analysis of a double similarity transformed coupled cluster theory,” The Journal of Chemical Physics 153, 084113 (2020).
  43. V. Agarawal, S. Roy, A. Chakraborty, and R. Maitra, “Accelerating coupled cluster calculations with nonlinear dynamics and supervised machine learning,” The Journal of Chemical Physics 154, 044110 (2021).
  44. V. Agarawal, C. Patra, and R. Maitra, “An approximate coupled cluster theory via nonlinear dynamics and synergetics: The adiabatic decoupling conditions,” The Journal of Chemical Physics 155, 124115 (2021).
  45. V. Agarawal, S. Roy, K. K. Shrawankar, M. Ghogale, S. Bharathi, A. Yadav, and R. Maitra, “A hybrid coupled cluster–machine learning algorithm: Development of various regression models and benchmark applications,” The Journal of Chemical Physics 156, 014109 (2022).
  46. C. Patra, V. Agarawal, D. Halder, A. Chakraborty, D. Mondal, S. Halder, and R. Maitra, “A synergistic approach towards optimization of coupled cluster amplitudes by exploiting dynamical hierarchy,” ChemPhysChem 24, e202200633 (2023).
  47. S. Halder, C. Patra, D. Mondal, and R. Maitra, “Machine learning aided dimensionality reduction toward a resource efficient projective quantum eigensolver: Formal development and pilot applications,” The Journal of Chemical Physics 158 (2023b).
  48. S. G. Mehendale, B. Peng, N. Govind, and Y. Alexeev, “Exploring parameter redundancy in the unitary coupled-cluster ansätze for hybrid variational quantum computing,” The Journal of Physical Chemistry A  (2023).
  49. P. V. S. Pathirage, J. T. Phillips, and K. D. Vogiatzis, “Exploration of the two-electron excitation space with data-driven coupled cluster,” The Journal of Physical Chemistry A  (2024).
  50. H. Haken and A. Wunderlin, “Slaving principle for stochastic differential equations with additive and multiplicative noise and for discrete noisy maps,” Z. Phys. B 47, 179–187 (1982).
  51. H. Haken, “Application of the maximum information entropy principle to selforganizing systems,” Zeitschrift für Physik B Condensed Matter 61, 335–338 (1985).
  52. H. Haken, “Nonlinear equations. the slaving principle,” in Advanced Synergetics (Springer, 1983) pp. 187–221.
  53. H. Haken, “Self-organization,” in Synergetics (Springer, 1983) pp. 191–227.
  54. S. Wu, K. He, and Z. Huang, “Suppressing complexity via the slaving principle,” Physical Review E 62, 4417 (2000).
  55. W. Iskra, M. Muller, and I. Rotter, “Self-organization in the nuclear system: I. the slaving principle,” Journal of Physics G: Nuclear and Particle Physics 19, 2045 (1993).
  56. Z. Zheng, C. Xu, J. Fan, M. Liu, and X. Chen, “Order parameter dynamics in complex systems: From models to data,” Chaos: An Interdisciplinary Journal of Nonlinear Science 34 (2024).
  57. K. Kowalski, “Properties of coupled-cluster equations originating in excitation sub-algebras,” The Journal of Chemical Physics 148, 094104 (2018).
  58. N. P. Bauman, E. J. Bylaska, S. Krishnamoorthy, G. H. Low, N. Wiebe, C. E. Granade, M. Roetteler, M. Troyer, and K. Kowalski, “Downfolding of many-body hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms,” The Journal of Chemical Physics 151, 014107 (2019).
  59. K. Kowalski, “Dimensionality reduction of the many-body problem using coupled-cluster subsystem flow equations: Classical and quantum computing perspective,” Physical Review A 104, 032804 (2021).
  60. N. P. Bauman and K. Kowalski, “Coupled cluster downfolding theory: Towards universal many-body algorithms for dimensionality reduction of composite quantum systems in chemistry and materials science,” Materials Theory 6, 1–19 (2022).
  61. K. Kowalski and N. P. Bauman, “Quantum flow algorithms for simulating many-body systems on quantum computers,” Physical Review Letters 131, 200601 (2023).
  62. P. Szakács and P. R. Surján, “Stability conditions for the coupled cluster equations,” Int. J. Quantum Chem. 108, 2043–2052 (2008).
  63. H. Haken and M. Synergetics, “Introduction and advanced topics,” Physics and Astronomy Online Library , 758 (2004).
  64. N. G. Van Kampen, “Elimination of fast variables,” Physics Reports 124, 69–160 (1985).
  65. J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love, and A. Aspuru-Guzik, “Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz,” Quantum Science and Technology 4, 014008 (2018).
  66. Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. Sawaya, et al., “Quantum chemistry in the age of quantum computing,” Chemical reviews 119, 10856–10915 (2019).
  67. D. Gottesman, “An introduction to quantum error correction and fault-tolerant quantum computation,” in Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics, Vol. 68 (2010) pp. 13–58.
  68. B. M. Terhal, “Quantum error correction for quantum memories,” Reviews of Modern Physics 87, 307 (2015).
  69. Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y. Li, J. R. McClean, and T. E. O’Brien, “Quantum error mitigation,” Reviews of Modern Physics 95, 045005 (2023).
  70. K. Temme, S. Bravyi, and J. M. Gambetta, “Error mitigation for short-depth quantum circuits,” Physical review letters 119, 180509 (2017).
  71. T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, and W. J. Zeng, “Digital zero noise extrapolation for quantum error mitigation,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE, 2020) pp. 306–316.
  72. Y. Kim, C. J. Wood, T. J. Yoder, S. T. Merkel, J. M. Gambetta, K. Temme, and A. Kandala, “Scalable error mitigation for noisy quantum circuits produces competitive expectation values,” Nature Physics , 1–8 (2023).
  73. Z. Cai, “A practical framework for quantum error mitigation,” arXiv preprint arXiv:2110.05389  (2021).
  74. R. Takagi, S. Endo, S. Minagawa, and M. Gu, “Fundamental limits of quantum error mitigation,” npj Quantum Information 8, 114 (2022).
  75. H. Abraham et. al, “Qiskit: An open-source framework for quantum computing,”  (2021).
  76. Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma, et al., “Pyscf: the python-based simulations of chemistry framework,” Wiley Interdisciplinary Reviews: Computational Molecular Science 8, e1340 (2018).
  77. R. LaRose, A. Mari, S. Kaiser, P. J. Karalekas, A. A. Alves, P. Czarnik, M. E. Mandouh, M. H. Gordon, Y. Hindy, A. Robertson, P. Thakre, M. Wahl, D. Samuel, R. Mistri, M. Tremblay, N. Gardner, N. T. Stemen, N. Shammah, and W. J. Zeng, “Mitiq: A software package for error mitigation on noisy quantum computers,” Quantum 6, 774 (2022).
  78. H. Haken, “Discrete dynamics of complex systems,” Discrete Dynamics in Nature and Society 1, 1–8 (1997).
Citations (2)

Summary

We haven't generated a summary for this paper yet.